Nuclear Magnetic Resonance (NMR)#

General Use#

NMR spectroscopy is a powerful tool to analyze the structural features of any molecule. In ORCA, NMR spectroscopic properties like shielding tensors and shifts, J coupling constants, and NMR spin-rotation constants can be calculated. These properties can be calculated by a wide range of different methods and we generally recommend to check recent benchmark studies like those by Kaupp and co-workers to [Kaupp2021a][Kaupp2021b] find a suitable method.

Important

The pcSseg-2 basis set used in some of the following tutorials is only available up to Kr. If heavier elements are present for which you don't want to compute the NMR properties anyway, you may add another available basis set like def2-TZVPP with the respective ECP to these atoms instead. For more information check the ORCA manual.

NMR Shielding Tensors#

A basic NMR shielding tensor calculation can be requested by the NMR input keyword.

!TPSSh DEF2-TZVPP NMR

*XYZFILE 0 1 structure.xyz

This input will compute the shielding tensors for all nuclei present in the given molecule.

J Coupling Constants#

J coupling constants can be requested via the SSALL keyword in the %EPRNMR block:

!TPSSh DEF2-TZVPP NMR

* XYZFILE 0 1 structure.xyz

%EPRNMR
     NUCLEI = ALL H {SHIFT, SSALL}
END

Important

The %EPRNMR block must be placed after the coordinates specification!

Hint

The SHIFT keyword in the example above will limit the computed shieldings to the H-atoms.

Spin-Rotation Constants#

Spin-rotation constants can be requested by the SROT keyword.

!TPSSh DEF2-TZVPP MASS2016

*XYZ 0 1
  C          -1.98519000000000      1.12204043805165      0.00000000000000
  O          -1.98519000000000     -0.00136043805165      0.00000000000000 M=16.999131
*

%EPRNMR
  NUCLEI = ALL O {SROT, IST=17}
END

Note

We have to define the masses of the individually requested nuclei via the coordinates input! The MASS2016 keyword will only use the atomic masses for the most abundant isotope that were redetermined in 2016. The IST keyword defines the magnetogyric ratio that will be used via the chosen isotope, in this case 17O.

Warning

The ORCA implementation follows that described in [Helgaker1996]. Therefore, the sign convention of the rotation constant components may differ when compared to different sources.

Example 1: 13C-NMR Chemical Shifts of Propionic Acid#

In this example, we will compute the isotropic shieldings of the 13C nuclei of propionic acid in CHCl3 solution. Experimental data for this molecule can be found in the SDBS database.

../_images/propionicacid.png

Figure: Molecular structure of propionic acid and the experimental 13C NMR chemical shifts.#

These will be used to compute the chemical shifts of the respective nuclei with reference to TMS according to:

\[ \sigma_{calc.} = \frac{\sigma_{ref.} - \sigma_{calc.}}{1 - \sigma_{ref.}} \approx \sigma_{ref.} - \sigma_{calc.} \]

Important

For very large shielding tensors, e.g. of very heavy nuclei such as Pb, the denominator (\(1 - \sigma_{ref.})\) cannot be neglected anymore.

As we use TMS as reference, we will first compute the isotropic shieldings for the TMS molecule with the TPSSh hybrid functional and Jensen's pcSseg-2 basis set. This method typically yields reasonably good NMR properties for most nuclei.

!TPSSh PCSSEG-2 AUTOAUX NMR CPCM(CHCl3)

*XYZFILE 0 1 tms.xyz

Hint

Instead of calculating a reference molecule you can use an internal standard. In this case, you just apply a constant shift to the calculated peaks, so that one of them is equal to a known value. For example, one could use the value of an assigned methyl or an aromatic H or C and benefit from possible error cancellations. This also makes more sense if the reference is too different from the target molecule or complicated to simulate, like phosphoric acid in water for 31P-NMR.

After the successful SCF calculation, ORCA will initiate the property calculation summarizing the requested properties:

------------------------------------------------------------------------------
                              ORCA PROPERTY CALCULATIONS
------------------------------------------------------------------------------

GBWName                                 ... nmr.gbw
Number of atoms                         ...     17
Number of basis functions               ...    355
Max core memory                         ...   1024 MB

[...]

NMR properties:
Chemical shifts                         ... YES (  17 nuclei)
Spin-rotation constants                 ...  NO (   0 nuclei)
Spin-spin couplings                     ...  NO (   0 nuclei,    0 pairs)

Choice of magnetic origin               ... GIAO
Position of magnetic origin             ...     0.000000     0.000000     0.000000

Note

The default algorithm uses Gauge-Independent Atomic Orbitals (GIAOs, [Ditchfield1973] and [Pulay1990]). This is quite important in NMR calculations and we do not recommended turning this off unless you really know what you are doing.

The calculated NMR shieldings are now printed after:

-------------------
CHEMICAL SHIELDINGS (ppm)
-------------------

with more detailed information on the computed components for each individual nucleus.

 --------------
 Nucleus   1C :
 --------------

Diamagnetic contribution to the shielding tensor (ppm) :
           242.422          0.000         0.049
             0.000        242.416         0.000
             0.003         -0.000       257.207

Paramagnetic contribution to the shielding tensor (ppm):
           -58.053         -0.000        -0.045
            -0.000        -58.104        -0.000
            -0.019         -0.000       -64.963

Total shielding tensor (ppm):
           184.369         -0.000         0.003
             0.000        184.312         0.000
            -0.016         -0.000       192.244


 Diagonalized sT*s matrix:

 sDSO           242.416          242.422          257.207  iso=     247.348
 sPSO           -58.104          -58.053          -64.963  iso=     -60.373
        ---------------  ---------------  ---------------
 Total          184.312          184.369          192.244  iso=     186.975

 Orientation:
  X          -0.0017605    0.9999981   -0.0008447
  Y          -0.9999985   -0.0017605   -0.0000017
  Z          -0.0000031    0.0008447    0.9999996

The desired isotropic shieldings are further summarized:

--------------------------------
CHEMICAL SHIELDING SUMMARY (ppm)
--------------------------------


  Nucleus  Element    Isotropic     Anisotropy
  -------  -------  ------------   ------------
      0       Si         341.516          0.029
      1       C          186.975          7.904
      2       C          186.946          7.938
      3       C          186.976          7.906
      4       C          186.976          7.906
[...]

Note

Chemically equivalent nuclei might have slight different shieldings, due to geometric asymmetries. In that case, the best thing to do is to simply average them.

After we got our reference shieldings for TMS, we can now calculate the respective 13C shieldings for propionic acid:

!TPSSh PCSSEG-2 AUTOAUX NMR CPCM(CHCl3)

*XYZFILE 0 1 propionic_acid.xyz

%EPRNMR
     NUCLEI = ALL C {SHIFT}
END
--------------------------------
CHEMICAL SHIELDING SUMMARY (ppm)
--------------------------------


  Nucleus  Element    Isotropic     Anisotropy
  -------  -------  ------------   ------------
      0       C          176.897         12.661
      1       C          157.417         35.788
      5       C           -2.675       -148.292

We can now calculate the respective chemical shifts and see that they are in reasonable agreement with the experimental data.

Comparison of calculated versus experimental 13C-NMR shifts for propionic acid using the pcSseg-2 basis.#

Method

\(\delta_1\)

\(\delta_2\)

\(\delta_3\)

TPSSh

11.8

30.5

185.9

Exp.

8.9

27.6

181.5

Note

Have in mind that the refence should always use the same level of theory as the target molecule, including any solvation effects or approximations such as the RI.

Important

Always have in mind that NMR shifts are quite sensitive to the conformer you choose. For flexible molecules, a conformer search with GOAT and subsequent Boltzmann weighting of the NMR properties for the conformer ensemble should be considered!

Example 2: J(H-H) Coupling Constants of Toluene and Plot with ChimeraX#

In this example, we calculate the J(H-H) couplings of toluene in chloroform for which experimental data are again extracted from the SDBS database. Here we highlight some of the J couplings between hydrogen atoms of the aromatic ring, as labeled in the database:

../_images/toluene.png

Figure: Selected experimental J(H-H) coupling constants of toluene.#

We use a similar input as used in the previous example and add the SSALL keyword.

!TPSSh PCSSEG-2 AUTOAUX NMR CPCM(CHCl3)

*XYZFILE 0 1 toluene.xyz

%EPRNMR
     NUCLEI = ALL H {SHIFT, SSALL}
END

The output will now show the details on the computed coupling constants:

-----------------------------------------------------------------------
                     NMR SPIN-SPIN COUPLING CONSTANTS
                     ================================

    Number of nuclear pairs to calculate something:       22
                                                        ----
    Number of nuclear pairs to calculate DSO   terms:     22
    Number of nuclear pairs to calculate PSO   terms:     22
    Number of nuclear pairs to calculate FC    terms:     22
    Number of nuclear pairs to calculate SD    terms:     22
    Number of nuclear pairs to calculate SD/FC terms:     22
-----------------------------------------------------------------------

Performing DSO num. integration        ... done (   0.1 sec)

Processing PSO nuclear pairs   ... done (   0.0 sec)
Processing SD/FC nuclear pairs ... done (   0.0 sec)

-----------------------------------------------------------
 NUCLEUS A = H    0 NUCLEUS B = H    3
 (  1H  gnA =  5.586   1H  gnB =  5.586) r(AB) =     2.4644
-----------------------------------------------------------

Diamagnetic contribution to J (Hz):
        3.9326         3.7596       -0.0014
       -3.8935        -3.7106        0.0009
        0.0006         0.0003       -1.2840
Paramagnetic contribution to J (Hz):
       -2.8211        -3.8016        0.0012
        3.9469         2.6118       -0.0008
       -0.0007        -0.0002        0.6851
Fermi-contact contribution to J (Hz):
        7.3084         0.0000        0.0000
        0.0000         7.3084        0.0000
        0.0000         0.0000        7.3084
Spin-dipolar contribution to J (Hz):
        0.1745         0.2651       -0.0001
       -0.2678         0.1216       -0.0000
        0.0000        -0.0001       -0.0887
Spin-dipolar/Fermi contact cross term contribution to J (Hz):
       -0.3444        -0.0087        0.0000
       -0.0087         0.1193        0.0001
        0.0000         0.0001        0.2247

Total spin-spin coupling tensor J (Hz):
        8.2501         0.2145       -0.0002
       -0.2231         6.4505        0.0001
       -0.0001         0.0001        6.8455

 Diagonalized JT*J matrix:

 J[0,3](DSO)           -3.708           -1.284            3.930  iso=     -0.354
 J[0,3](PSO)            2.609            0.685           -2.818  iso=      0.159
 J[0,3](FC)             7.308            7.308            7.308  iso=      7.308
 J[0,3](SD)             0.122           -0.089            0.174  iso=      0.069
 J[0,3](SD/FC)          0.119            0.225           -0.345  iso=     -0.000
              ---------------  ---------------  ---------------  ---------------
 J[0,3](Total)          6.451            6.846            8.250  iso=      7.182

[...]

With a final summary in the end:

-----------------------------------------------------------------------------
                SUMMARY OF ISOTROPIC COUPLING CONSTANTS J (Hz)
-----------------------------------------------------------------------------
                  0 H        3 H        7 H        9 H       11 H       12 H
      0 H        0.000      7.182      0.720      1.917      7.058      0.060
      3 H        7.182      0.000      2.463      0.662      1.648     -0.375
      7 H        0.720      2.463      0.000      7.398      1.618      0.069
      9 H        1.917      0.662      7.398      0.000      6.897      0.000
     11 H        7.058      1.648      1.618      6.897      0.000      0.000
     12 H        0.060     -0.375      0.069      0.000      0.000      0.000
     13 H        0.000     -1.331     -1.327      0.437      0.000    -14.460
     14 H        0.000     -1.323     -1.321      0.434      0.000    -14.441
                 13 H       14 H
      0 H        0.000      0.000
      3 H       -1.331     -1.323
      7 H       -1.327     -1.321
      9 H        0.437      0.434
     11 H        0.000      0.000
     12 H      -14.460    -14.441
     13 H        0.000    -19.069
     14 H      -19.069      0.000

Important

The values are printed in Hz, so in order to convert them to ppm one has to take into account the equipment's frequency. In our case, the database says it was measured in 300 MHz NMR, so that the coupling in ppm would be:

\[ J_{ppm} = J_{Hz} / \omega_{equipMHZ} = J_{Hz} / 300 \]

Again, we can compare our computed data to the experiment:

Comparison of calculated versus experimental H-NMR J(H-H) couplings for toluene#

Coupling

Calculated (Hz)

Experiment (Hz)

A (H3) - A' (H7)

2.46

1.97

A (H7) - B (H9)

7.40

7.68

A (H7) - C (H11)

1.62

1.27

After we computed the NMR shieldings and J coupling constants, we can visualize the coupled NMR spectrum with ChimeraX (with the SEQCROW plugin). To do so, we simply open the ORCA output file with ChimeraX, navigate to ToolsQuantum ChemistryNMR Spectrum.

ChimeraX offers many settings, including the choice of a reference shift, the pulse frequency, and manual choice of equivalent nuclei. The spectrum can further be exported as picture or as .csv data for further processing.

../_images/nmr-chimerax.png

Figure: Calculated NMR spectrum of toluene visualized with ChimeraX.#

Example 3: NMR Chemical Shifts with Double-Hybrid DFT#

In ORCA, the NMR shielding constants can also be computed using the double-hybrid functionals, that profit from adding MP2 correlation to DFT [Neese2018].

!revDSD-PBEP86-D4/2021 PCSSEG-3 AUTOAUX NMR NOFROZENCORE

*XYZFILE 0 1 opt.xyz

Important

Per default MP2 and double-hybrid DFT uses the frozen core approximation. As NMR properties are strongly influenced by the core electrons, we need to deactivate it with the NOFROZENCORE keyword.

Note

Note, that double-hybrid functionals typically require larger basis sets like pcSseg-3 for converged results.

ORCA will compute the NMR properties at the SCF DFT level first:

-------------------
CHEMICAL SHIELDINGS (ppm)
-------------------

Method             : SCF
Type of density    : Electron Density
[...]

and the properties based on the unrelaxed and the relaxed MP2 density afterwards:

-------------------
CHEMICAL SHIELDINGS (ppm)
-------------------

Method             : MP2
Type of density    : Electron Density
Type of derivative : Magnetic Field (with GIAOs) (Direction=X)
Multiplicity       :   1
Level              : Unrelaxed density
-------------------
CHEMICAL SHIELDINGS (ppm)
-------------------

Method             : MP2
Type of density    : Electron Density
Type of derivative : Magnetic Field (with GIAOs) (Direction=X)
Multiplicity       :   1
Level              : Relaxed density

The results based on the relaxed density are the desired properties.

Warning

Double-hybrids typically give better results than lower-level DFT approaches, however, for some systems, e.g., those with small HOMO-LUMO gaps or 3d transition metal complexes, MP2-based approaches are prone to large errors and may be avoided in favor of a robust meta-GGA like B97M-V and r2SCAN or hybrid functionals like r2SCAN0, TPSSh, and ωB97X-V.

Tip

Even though no J coupling constants are available from MP2 or double-hybrid DFT, coupled spectra can be obtained from mixing theories for shieldings and couplings. For example, we can combine chemical shifts calculated at the double-hybrid DFT level with J coupling constants from a hybrid DFT calculation.

Example 4: Spin-Rotation Constants of 12C17O#

In this example, we will compute the NMR spin-rotation constant of 12C17O. In the respective input, we defined the atomic mass of O to match 17O and adjusted the magnetogyric ratio for the chosen isotope.

! TPSSh PCSSEG-3 AUTOAUX MASS2016

*XYZ 0 1
  C          -1.98519000000000      1.12204043805165      0.00000000000000
  O          -1.98519000000000     -0.00136043805165      0.00000000000000 M=16.999131
*

%EPRNMR
  NUCLEI = ALL O {SROT, IST=17}
END

After successful calculation, the results are printed to the output.

---------------------------
NMR SPIN-ROTATION CONSTANTS
---------------------------

Analytic diamagnetic shielding integrals (local origin) (SHARK)        ... done (  0.0 sec)

 ------------------------------------------------
 Nucleus   1O  (Isotope =  17 GN =  -0.75751600):
 ------------------------------------------------

Nuclear contribution to the spin-rotation tensor (kHz) : 
            -3.535          0.000         0.000
             0.000          0.000         0.000
             0.000          0.000        -3.535

Electronic contribution to the spin-rotation tensor (kHz) : 
            35.729          0.000         0.000
            -0.000          0.000         0.000
             0.000          0.000        35.705

Total spin-rotation tensor (kHz): 
            32.194          0.000         0.000
            -0.000          0.000         0.000
             0.000          0.000        32.170


 Diagonalized MT*M matrix:
 
 M(Nuc)          -0.000           -3.535           -3.535  iso=      -2.356
 M(El)           -0.000           35.705           35.729  iso=      23.811
        ---------------  ---------------  ---------------
 M(Tot)          -0.000           32.170           32.194  iso=      21.455

-----------------------------------
NMR SPIN-ROTATION CONSTANTS SUMMARY
-----------------------------------

  Nucleus  Isotope  Atomic Mass   g-factor   Spin-Rot. Const. (kHz)
  -------  -------  -----------  ----------  ----------------------
      1     17-O     16.9991310  -0.7575160            21.455

here M(Tot) gives the aa, bb, and cc (or XX, YY, and ZZ) components and the isotropic NMR spin-rotation constant. The latter is further summarized in the end with some additional information like the atomic mass.

-----------------------------------
NMR SPIN-ROTATION CONSTANTS SUMMARY
-----------------------------------

  Nucleus  Isotope  Atomic Mass   g-factor   Spin-Rot. Const. (kHz)
  -------  -------  -----------  ----------  ----------------------
      1     17-O     16.9991310  -0.7575160            22.379

If we now compare the spin-rotation constant components with the experiment, we see that the absolute value is in excellent agreement with the experimental data. Note that the sign convention used in the original implementation followed in ORCA[Helgaker1996] may differ from that used in other works.

NMR spin-rotation constant components of 17O in 12C17O compared to experiment[Beninati2002].#

Component

Calculated (kHz)

Experiment (kHz)

aa

0.00

0.000

bb = cc

32.17

-31.609

Structures#

1-propionic acid
11

  C          -2.02727527554235     -0.06655130656306      0.00037392908842
  C          -0.75679471221434      0.75631573207355     -0.00012855244818
  H          -2.07991021538891     -0.70955234104354     -0.87882169434027
  H          -2.89912000279840      0.58830528850859     -0.00322251101424
  H          -2.08298208770946     -0.70385824832254      0.88351978507734
  C           0.49305145889248     -0.07125461785103      0.00054681142313
  H          -0.70522440144489      1.41749189951821      0.86998810223388
  H          -0.70520776302305      1.41676824159293     -0.87073904389322
  O           1.59469763588682      0.69133816497292     -0.00209843924434
  H           2.36249659648209      0.10385573531668     -0.00149870485071
  O           0.54282876686002     -1.27602854820272      0.00280031796818
TMS
17

  Si         -0.00016217760413     -0.00000200966369     -0.00001724916921
  C          -0.00000381060783     -0.00000292410772      1.87604035066756
  C           1.76890263153042     -0.00000220438520     -0.62476798792801
  C          -0.88452969047227     -1.53170003319882     -0.62565336419779
  C          -0.88451803763557      1.53170284867113     -0.62564941393828
  H          -1.02024320585180     -0.00004763673129      2.26807747150872
  H           0.51041349194385      0.88367742102248      2.26744728207030
  H           0.51049406579855     -0.88363545598283      2.26744932583441
  H           1.79889713542055     -0.00002636281349     -1.71733986918209
  H           2.30802219317048      0.88363945655706     -0.27386690302155
  H           2.30803592092593     -0.88361814255887     -0.27382577782536
  H          -0.90062854341904     -1.55578670297871     -1.71826319426016
  H          -1.91903757060460     -1.55776918964915     -0.27388248209104
  H          -0.38800706817058     -2.44075463393491     -0.27679593332374
  H          -0.90062145682280      1.55579443985819     -1.71826001944301
  H          -1.91902290654613      1.55778308725346     -0.27387187984590
  H          -0.38798097105504      2.44074804264236     -0.27679035585484
Toluene
15

  H          -1.35604030632667     -2.14062097490572      0.00064845084188
  C          -0.81881186265084     -1.19920744744936      0.00036920002554
  C           0.57048137420035     -1.19832779892086      0.00026808880500
  H           1.10835381829194     -2.14039396264630      0.00046230443757
  C           1.28750860478784     -0.00560299513861     -0.00011156472044
  C           2.78618878796062     -0.00087766989700      0.00001333464042
  C           0.57330375607799      1.19242335570751     -0.00043685135727
  H           1.11365279206821      2.13339476273244     -0.00080313848306
  C          -0.81287809106069      1.19760459513790     -0.00033526034055
  H          -1.34757760412811      2.14049019369371     -0.00061393156388
  C          -1.51637266595660     -0.00071299542650      0.00007861209975
  H          -2.59983293655610      0.00175614049417      0.00013091762840
  H           3.18457831555614     -1.01559669047846     -0.00219503682240
  H           3.17734526715488      0.51581479390032      0.87984977178833
  H           3.17754075058104      0.51985669319674     -0.87732489697927
CO
2

  C          -1.98519000000000      1.12204043805165      0.00000000000000
  O          -1.98519000000000     -0.00136043805165      0.00000000000000