Bibliography

[1]

National institute of standards and technology (NIST) atomic spectra database.

[2]

https://sites.google.com/site/orcainputlibrary/.

[3]

V. Ásgeirsson. Development and Evaluation of Computational Methods for Studies of Chemical Reactions. University of Iceland, 2021.

[4]

V. Ásgeirsson, Birgirsson B.O., R. Bjornsson, U. Becker, C. Riplinger, F. Neese, and H. Jónssson. Nudged elastic band method for molecular reactions using energy-weighted springs combined with eigenvector following. J. Chem. Theory Comput., 17:4929, 2021. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.1c00462, doi:https://doi.org/10.1021/acs.jctc.1c00462.

[5]

Vilhjálmur Ásgeirsson, Andri Arnaldsson, and Hannes Jónsson. Efficient evaluation of atom tunneling combined with electronic structure calculations. J. Chem. Phys., 148(10):102334, 2018. URL: https://doi.org/10.1063/1.5007180, doi:10.1063/1.5007180.

[6]

J. Ŕezáč, K. E. Riley, and P. Hobza. J. Chem. Theory Comput., 7:2427, 2011.

[7]

C. Adamo and V. Barone. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mpw and mpw1pw models. J. Chem. Phys., 108:664, 1998. URL: https://pubs.aip.org/aip/jcp/article-abstract/108/2/664/182704/, doi:https://doi.org/10.1063/1.475428.

[8]

C. Adamo and V. Barone. Toward reliable density functional methods without adjustable parameters: the pbe0 model. J. Chem. Phys., 110:6158, 1999. URL: https://pubs.aip.org/aip/jcp/article-abstract/110/13/6158/476177/, doi:https://doi.org/10.1063/1.478522.

[9]

C. Adamo, A. di Matteo, and V. Barone. From classical density functionals to adiabatic connection methods. the state of the art. Adv. Quant. Chem., 36:45, 2000. URL: https://www.sciencedirect.com/science/article/abs/pii/S0065327608604785, doi:https://doi.org/10.1016/S0065-3276(08)60478-5.

[10]

R Ahlrichs, H Lischka, V Staemmler, and W Kutzelnigg. Pno–ci (pair natural orbital configuration interaction) and cepa–pno (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. i. outline of the method for closed-shell states. The Journal of Chemical Physics, 62(4):1225–1234, 1975.

[11]

R. Ahlrichs. Many body perturbation calculations and coupled electron pair models. Comp. Phys. Comm., 17:31, 1979. URL: https://www.sciencedirect.com/science/article/abs/pii/0010465579900675, doi:https://doi.org/10.1016/0010-4655(79)90067-5.

[12]

R. Ahlrichs. In P. v. R. Schleyer, editor, Encyclopedia of Computational Chemistry, pages 3123. John Wiley and Sons, 1998. URL: https://onlinelibrary.wiley.com/page/book/10.1002/0470845015/homepage/editorscontributors.html, doi:https://doi.org/10.1002/0470845015.

[13]

R. Ahlrichs, M. Bär, H. P. Baron, R. Bauernschmitt, S. Böcker, M. Ehrig, K. Eichkorn, S. Elliott, F. Furche, F. Haase, M. Häser, H. Horn, C. Huber, U. Huniar, M. Kattanek, C. Kölmel, M. Kollwitz, K. May, C. Ochsenfeld, H. Öhm, A. Schäfer, U. Schneider, O. Treutler, M. von Arnim, F. Weigend, P. Weis, and H. Weiss. TurboMole - Program System for Ab Initio Electronic Structure Calculations, Version 5.2. Universität Karlsruhe, Karlsruhe, Germany, 2000. URL: https://www.turbomole.org/.

[14]

R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett., 162:165, 1989. URL: https://www.sciencedirect.com/science/article/abs/pii/0009261489851188, doi:https://doi.org/10.1016/0009-2614(89)85118-8.

[15]

R. Ahlrichs and P. Scharf. In K. P. Lawley, editor, Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry, Part I, Advances in Chemical Physics. Wiley, 1987.

[16]

R. Ahlrichs, P. Scharf, and C. Ehrhardt. The coupled pair functional (cpf). a size consistent modification of the ci(sd) based on an energy functional. J. Chem. Phys., 82:890, 1985. URL: https://pubs.aip.org/aip/jcp/article-abstract/82/2/890/153875, doi:https://doi.org/10.1063/1.448517.

[17]

R. Ahlrichs and coworkers. Unpublished.

[18]

D. R. Alcoba, L. Lain, A. Torre, and R. C. Bochicchio. Local spin: a treatment beyond single determinant wave functions. Chem. Phys. Lett., 470:136, 2009. URL: https://www.sciencedirect.com/science/article/abs/pii/S000926140900044X, doi:https://doi.org/10.1016/j.cplett.2009.01.034.

[19]

J. Almlöf. Direct Methods in Electronic Structure Theory. In D. R. Yarkony, editor, Modern Electronic Structure Theory, pages 110. World Scientific, 1995. URL: https://www.worldscientific.com/worldscibooks/10.1142/1957#t=aboutBook, doi:https://doi.org/10.1142/1957.

[20]

J. Almlöf and P. R. Taylor. Computational Aspects of Direct SCF and MCSCF Methods. In C. E. Dykstra, editor, Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, pages 107. Springer, 1984. URL: https://link.springer.com/content/pdf/10.1007/978-94-009-6451-8.pdf#page=115, doi:https://doi.org/10.1007/97S-94-009-6451-S.

[21]

K. Almlöf, J. Faegri and K. Korsell. Principles for a direct scf approach to licao\textendashmoab -initio calculations. J. Comput. Chem., 3:385, 1982. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540030314, doi:https://doi.org/10.1002/jcc.540030314.

[22]

A. Altun, F. Neese, and G. Bistoni. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein J. Org. Chem., 14:919–929, 2018. URL: <Go to ISI>://WOS:000430878300002, doi:10.3762/bjoc.14.79.

[23]

A. Altun, F. Neese, and G. Bistoni. Extrapolation to the limit of a complete pair natural orbital space in local coupled-cluster calculations. J. Chem. Theory Comput., 16(10):6142–6149, 2020. URL: <Go to ISI>://WOS:000580954000015, doi:https://doi.org/10.1021/acs.jctc.0c00344.

[24]

A. Altun, F. Neese, and G. Bistoni. Open-shell variant of the london dispersion-corrected hartree-fock method hfld for the quantification and analysis of noncovalent interaction energies. J. Chem. Theory Comput., 18(4):2292–2307, 2022. doi:10.1021/acs.jctc.1c01295.

[25]

Ahmet Altun, Miquel Garcia-Ratés, Frank Neese, and Giovanni Bistoni. Unveiling the complex pattern of intermolecular interactions responsible for the stability of the dna duplex. Chemical Science, 12(38):12785–12793, 2021. URL: https://pubs.rsc.org/en/content/articlehtml/2021/sc/d1sc03868k, doi:https://doi.org/10.1039/D1SC03868K.

[26]

Ahmet Altun, Soumen Ghosh, Christoph Riplinger, Frank Neese, and Giovanni Bistoni. Addressing the system-size dependence of the local approximation error in coupled-cluster calculations. The Journal of Physical Chemistry A, 125(45):9932–9939, 2021. URL: https://pubs.acs.org/doi/full/10.1021/acs.jpca.1c09106, doi:https://doi.org/10.1021/acs.jpca.1c09106.

[27]

Ahmet Altun, Róbert Izsák, and Giovanni Bistoni. Local energy decomposition of coupled-cluster interaction energies: Interpretation, benchmarks, and comparison with symmetry-adapted perturbation theory. Int. J. Quantum Chem., 121(3):e26339, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26339, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.26339, doi:10.1002/qua.26339.

[28]

Ahmet Altun, Frank Neese, and Giovanni Bistoni. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein J. Org. Chem., 14:919, 2018. URL: https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b01145, doi:https://doi.org/10.1021/acs.jctc.8b01145.

[29]

Ahmet Altun, Frank Neese, and Giovanni Bistoni. Effect of electron correlation on intermolecular interactions: A pair natural orbitals coupled cluster based local energy decomposition study. J. Chem. Theory Comput., 15(1):215–228, 2019. URL: https://doi.org/10.1021/acs.jctc.8b00915, doi:https://doi.org/10.1021/acs.jctc.8b00915.

[30]

Ahmet Altun, Frank Neese, and Giovanni Bistoni. HFLD: A nonempirical london dispersion-corrected Hartree–Fock method for the quantification and analysis of noncovalent interaction energies of large molecular systems. J. Chem. Theory Comput., 15(11):5894–5907, 2019. URL: https://doi.org/10.1021/acs.jctc.9b00425, arXiv:https://doi.org/10.1021/acs.jctc.9b00425, doi:10.1021/acs.jctc.9b00425.

[31]

Ahmet Altun, Frank Neese, and Giovanni Bistoni. Extrapolation to the limit of a complete pair natural orbital space in local coupled-cluster calculations. Journal of Chemical Theory and Computation, 16(10):6142–6149, 2020. URL: https://pubs.acs.org/doi/full/10.1021/acs.jctc.0c00344, doi:https://doi.org/10.1021/acs.jctc.0c00344.

[32]

Ahmet Altun, Christoph Riplinger, Frank Neese, and Giovanni Bistoni. Exploring the accuracy limits of pno-based local coupled-cluster calculations for transition-metal complexes. Journal of Chemical Theory and Computation, 19(7):2039–2047, 2023.

[33]

Ahmet Altun, Masaaki Saitow, Frank Neese, and Giovanni Bistoni. Local energy decomposition of open-shell molecular systems in the domain-based local pair natural orbital coupled cluster framework. J. Chem. Theory Comput., 15(3):1616–1632, 2019. URL: https://doi.org/10.1021/acs.jctc.8b01145, doi:https://doi.org/10.1021/acs.jctc.8b01145.

[34]

A. T. Amos and G. G. Hall. Single determinant wave functions. Proc. R. Soc. Ser. A., 263:483, 1961. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1961.0175, doi:https://doi.org/10.1098/rspa.1961.0175.

[35]

Hans C. Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys., 52(1):24–34, 1983. URL: https://www.sciencedirect.com/science/article/abs/pii/0021999183900141, doi:https://doi.org/10.1016/0021-9991(83)90014-1.

[36]

W. P. Anderson, T. R. Cundari, R. S. Drago, and M. C. Zerner. Utility of the semiempirical indo/1 method for the calculation of the geometries of second-row transition-metal species. Inorg. Chem., 29:3, 1990. URL: https://pubs.acs.org/doi/pdf/10.1021/ic00326a001, doi:https://doi.org/10.1021/ic00326a001.

[37]

W. P. Anderson, T. R. Cundari, and M. C. Zerner. An intermediate neglect of differential overlap model for second-row transition metal species. Int. J. Quant. Chem., 39:31, 1991. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560390106, doi:https://doi.org/10.1002/qua.560390106.

[38]

W. P. Anderson, W. D. Edwards, and M. C. Zerner. Calculated spectra of hydrated ions of the first transition-metal series. Inorg. Chem., 25:2728, 1986. URL: https://pubs.acs.org/doi/pdf/10.1021/ic00236a015, doi:https://doi.org/10.1021/ic00236a015.

[39]

K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski. Second-order perturbation theory with a casscf reference function. J. Phys. Chem., 94:5483–5488, 1990. URL: https://pubs.acs.org/doi/pdf/10.1021/j100377a012, doi:https://doi.org/10.1021/j100377a012.

[40]

Kerstin. Andersson, Per Aake. Malmqvist, Bjoern O. Roos, Andrzej J. Sadlej, and Krzysztof. Wolinski. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem., 94:5483–5488, 07 1990. doi:https://doi.org/10.1021/j100377a012.

[41]

D. Andrae, U. Häu\ssermann , M. Dolg, H. Stoll, and H. Preuss. Energy-adjusted ab\textendashinitio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta, 77:123–141, 1990. URL: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/referencespapers.aspx?referenceid=2566997, doi:https://doi.org/10.1007/BF01114537.

[42]

J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki. In S. Huzinaga, editor, Gaussian Basis Sets for Molecular Calculations. Elsevier, 1984. URL: https://books.google.com/books?hl=en&lr=&id=2lBK9AgvnmIC&oi=fnd&pg=PP1&dq=Andzelm,+J.+and+Klobukowski,+M.+and+Radzio-Andzelm,+E.+and+Sakai,+Y.+and+Tatewaki,+H.&ots=NBQHZHfC3A&sig=btp_M0PZvYGZJhCLv8T5htEZVEM.

[43]

C. Angeli, S. Borini, M. Cestari, and R. Cimigraglia. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys., 121:4043, 2004. URL: https://pubs.aip.org/aip/jcp/article-abstract/121/9/4043/186965/, doi:https://doi.org/10.1063/1.1778711.

[44]

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.P. Malrieu. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys., 114:10252–10264, 2001. URL: https://pubs.aip.org/aip/jcp/article-abstract/114/23/10252/183833/, doi:https://doi.org/10.1063/1.1361246.

[45]

C. Angeli, R. Cimiraglia, and J.P. Malrieu. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett., 350:297–305, 2001. URL: https://www.sciencedirect.com/science/article/abs/pii/S0009261401013033, doi:https://doi.org/10.1016/S0009-2614(01)01303-3.

[46]

C. Angeli, R. Cimiraglia, and J.P. Malrieu. N-electron valence state perturbation theory: a spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys., 117:9138–9153, 2002. URL: https://pubs.aip.org/aip/jcp/article-abstract/117/20/9138/464690/, doi:https://doi.org/10.1063/1.1515317.

[47]

Celestino Angeli. On the nature of the π \textrightarrow π* ionic excited states: The V state of ethene as a prototype. J. Comput. Chem., 30:1319–1333, 2009. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21155, doi:https://doi.org/10.1002/jcc.21155.

[48]

Celestino Angeli, Stefano Borini, Mirko Cestari, and Renzo Cimiraglia. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys., 121:4043–4049, 08 2004. URL: https://pubs.aip.org/aip/jcp/article-abstract/121/9/4043/186965/, doi:https://doi.org/10.1063/1.1778711.

[49]

Victor Anisimov and James JP Stewart. Introduction to the Fast Multipole Method: Topics in Computational Biophysics, Theory, and Implementation. CRC Press, 2019.

[50]

Francesco Aquilante, Per-Å ke Malmqvist, Thomas Bondo Pedersen, Abhik Ghosh, and Björn Olof Roos. Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): Application to the Spin-State Energetics of CoIII(diiminato)(NPh). J. Chem. Theory Comput., 4:694–702, 05 2008. URL: https://pubs.acs.org/doi/abs/10.1021/ct700263h, doi:https://doi.org/10.1021/ct700263h.

[51]

Juan Arago, Enrique Orti, and Juan C. Sancho-Garcia. Nonlocal van der Waals Approach Merged with Double-Hybrid Density Functionals: Toward the Accurate Treatment of Noncovalent Interactions. J. Chem. Theory Comput., 9(8):3437–3443, 08 2013. URL: https://doi.org/10.1021/ct4003527 (visited on 2020-09-15), doi:10.1021/ct4003527.

[52]

D. Aravena, F. Neese, and Dimitrios A. Pantazis. Improved segmented all-electron relativistically contracted basis sets for the lanthanides. J. Chem. Theory Comput., 12:1148–1156, 2016. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b01048, doi:https://doi.org/10.1021/acs.jctc.5b01048.

[53]

Daniel Aravena, Mihail Atanasov, and Frank Neese. Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory. Inorg. Chem., 55(9):4457–4469, 05 2016. URL: https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.6b00244, doi:10.1021/acs.inorgchem.6b00244.

[54]

Behnam Assadollahzadeh and Peter Schwerdtfeger. A systematic search for minimum structures of small gold clusters Aun (n=2–20) and their electronic properties. The Journal of Chemical Physics, 131(6):064306, August 2009. Publisher: American Institute of Physics. URL: https://aip.scitation.org/doi/full/10.1063/1.3204488 (visited on 2022-04-22), doi:https://doi.org/10.1063/1.3204488.

[55]

X. Assfeld and J.-L. Rivail. Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem. Phys. Lett., 263:100–106, 12 1996. doi:10.1016/S0009-2614(96)01165-7.

[56]

Mihail Atanasov, Dmitry Ganyushin, Dimitrios A. Pantazis, Kantharuban Sivalingam, and Frank Neese. Detailed Ab Initio First-Principles Study of the Magnetic Anisotropy in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. Inorg. Chem., 50(16):7460–7477, 08 2011. URL: https://pubs.acs.org/doi/abs/10.1021/ic200196k, doi:10.1021/ic200196k.

[57]

Mihail Atanasov, Dmitry Ganyushin, Kantharuban Sivalingam, and Frank Neese. A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions. In David Michael P. Mingos, Peter Day, and Jens Peder Dahl, editors, Molecular Electronic Structures of Transition Metal Complexes II, number 143 in Structure and Bonding, pages 149–220. Springer Berlin Heidelberg, 2011. URL: https://link.springer.com/chapter/10.1007/430_2011_57, doi:https://doi.org/10.1007/430_2011_57.

[58]

J. E. Atkins, E. G. Boman, and B. Hendrickson. A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Computing., 28(1):297–310, 1998. URL: https://epubs.siam.org/doi/abs/10.1137/S0097539795285771, doi:https://doi.org/10.1137/S0097539795285771.

[59]

A. A. Auer and Stanton J. F. Gauss, J. Quantitative prediction of gas-phase $^13$c nuclear magnetic shielding constants. J. Chem. Phys., 118:10407, 2003. URL: https://pubs.aip.org/aip/jcp/article-abstract/118/23/10407/844083/, doi:https://doi.org/10.1063/1.1574314.

[60]

A. A. Auer, V. A. Tran, B. Sharma, G. L. Stoychev, D. Marx, and F. Neese. A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on epr hyperfine coupling constants: vibrational perturbation theory versus ab-initio molecular dynamics. Mol. Phys., 118:16, 2020. URL: https://www.tandfonline.com/doi/full/10.1080/00268976.2020.1797916, doi:https://doi.org/10.1080/00268976.2020.1797916.

[61]

M. C. Böhm and R. Gleiter. A cndo/indo molecular orbital formalism for the elements h to br. theory. Theor. Chim. Acta, 59:127 & 153, 1981. URL: https://link.springer.com/article/10.1007/BF00552536, doi:https://doi.org/10.1007/BF00552536.

[62]

M. Bühl, C. Reimann, D. A. Pantazis, T. Bredow, and F. Neese. Geometries of third-row transition-metal complexes from density-functional theory. J. Chem. Theory Comput., 4:1449–1459, 2008. URL: https://pubs.acs.org/doi/abs/10.1021/ct800172j, doi:https://doi.org/10.1021/ct800172j.

[63]

A. D. Bacon and M. C. Zerner. An intermediate neglect of differential overlap theory for transition metal complexes: fe, co and cu chlorides. Theor. Chim. Acta, 53:21, 1979. URL: https://link.springer.com/article/10.1007/BF00547605, doi:https://doi.org/10.1007/BF00547605.

[64]

George B. Bacskay. A quadratically convergent Hartree–Fock (QC-SCF) method. Application to closed shell systems. Chem. Phys., 61(3):385–404, 1981. URL: https://www.sciencedirect.com/science/article/abs/pii/0301010481851567, doi:https://doi.org/10.1016/0301-0104(81)85156-7.

[65]

E. J. Baerends, D. E. Ellis, and P. Ros. Self-consistent molecular hartree—fock—slater calculations i. the computational procedure. Chem. Phys., 2:41, 1973. URL: https://www.sciencedirect.com/science/article/abs/pii/030101047380059X, doi:https://doi.org/10.1016/0301-0104(73)80059-X.

[66]

Alberto Baiardi, Julien Bloino, and Vincenzo Barone. A general time-dependent route to Resonance-Raman spectroscopy including Franck-Condon, Herzberg-Teller and Duschinsky effects. J. Chem. Phys., 141(11):114108, 09 2014. URL: http://aip.scitation.org/doi/10.1063/1.4895534, doi:https://doi.org/10.1063/1.4895534.

[67]

J. Baker. An algorithm for the location of transition states. J. Comput. Chem., 7:385, 1986. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540070402, doi:https://doi.org/10.1002/jcc.540070402.

[68]

Jon Baker. Constrained optimization in delocalized internal coordinates. J. Comput. Chem., 18(8):1079–1095, 06 1997. URL: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-987X(199706)18:8<1079::AID-JCC12>3.0.CO;2-8/abstract, doi:10.1002/(SICI)1096-987X(199706)18:8<1079::AID-JCC12>3.0.CO;2-8.

[69]

C. Bannwarth and S. Grimme. A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. Comp. Theor. Chem., 1040 –1041:45–53, 2014. URL: https://www.sciencedirect.com/science/article/abs/pii/S2210271X14000942, doi:https://doi.org/10.1016/j.comptc.2014.02.023.

[70]

Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput., 15(3):1652–1671, 2019. doi:10.1021/acs.jctc.8b01176.

[71]

Giuseppe M. J. Barca, Andrew T. B. Gilbert, and Peter M. W. Gill. Simple Models for Difficult Electronic Excitations. Journal of Chemical Theory and Computation, 14(3):1501–1509, March 2018. Publisher: American Chemical Society. doi:10.1021/acs.jctc.7b00994.

[72]

G. Barcza, Ö. Legeza, K. H. Marti, and M. Reiher. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A, 83:012508, 2011. URL: https://link.aps.org/doi/10.1103/PhysRevA.83.012508, doi:https://doi.org/10.1103/PhysRevA.83.012508.

[73]

Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Phys. Rev. Lett., 100(2):020603, 2008. URL: https://link.aps.org/doi/10.1103/PhysRevLett.100.020603, doi:10.1103/PhysRevLett.100.020603.

[74]

Loïc Barnes, Baptiste Schindler, Isabelle Compagnon, and Abdul-Rahman Allouche. Fast and accurate hybrid QM//MM approach for computing anharmonic corrections to vibrational frequencies. J. Mol. Model., 22(11):285, 11 2016. URL: https://doi.org/10.1007/s00894-016-3135-5 (visited on 2020-04-14), doi:10.1007/s00894-016-3135-5.

[75]

V. Barone. In D. P. Chong, editor, Recent Advances in Density Functional Methods, Part I. World Scientific, 1996. URL: https://books.google.com/books?hl=en&lr=&id=Uu7sCgAAQBAJ&oi=fnd&pg=PR5&dq=Recent+Advances+in+Density+Functional+Methods,+Part+%7B%7BI%7D%7D&ots=Lo2ioOfVLp&sig=XRnsD7SEqIHDUQYPrb7GH2jizE4.

[76]

V. Barone and M. Cossi. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A, 102:1995–2001, 1998. URL: https://pubs.acs.org/doi/abs/10.1021/jp9716997, doi:https://doi.org/10.1021/jp9716997.

[77]

Vincenzo Barone, Malgorzata Biczysko, and Julien Bloino. Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation. Phys. Chem. Chem. Phys., 16(5):1759–1787, 2014. URL: http://dx.doi.org/10.1039/C3CP53413H, doi:10.1039/C3CP53413H.

[78]

Albert P Bartók and Jonathan R Yates. Regularized SCAN functional. J. Chem. Phys., 150(16):161101, 2019. URL: https://aip.scitation.org/doi/abs/10.1063/1.5094646, doi:https://doi.org/10.1063/1.5094646.

[79]

Jefferson E. Bates and Filipp Furche. Harnessing the meta-generalized gradient approximation for time-dependent density functional theory. J. Chem. Phys., 137(16):164105, 10 2012. URL: http://aip.scitation.org/doi/10.1063/1.4759080, arXiv:23126693, doi:https:/doi.org/10.1063/1.4759080.

[80]

R. Bauernschmitt and R. Ahlrichs. Stability analysis for solutions of the closed shell kohn\textendashsham equation. J. Chem. Phys., 104:9047, 1996. URL: https://pubs.aip.org/aip/jcp/article-abstract/104/22/9047/180688/, doi:https://doi.org/10.1063/1.471637.

[81]

C. W. Jr. Bauschlicher, S. R. Langhoff, and L. A. Barnes. Theoretical studies of the first and second –row transition –metal methyls and their positive ions. J. Chem. Phys., 91:2399, 1989. URL: https://pubs.aip.org/aip/jcp/article-abstract/91/4/2399/223082/, doi:https://doi.org/10.1063/1.456998.

[82]

Krzysztof B. Bec and Christian W. Huck. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem., 7:48, 02 2019. URL: https://www.frontiersin.org/article/10.3389/fchem.2019.00048/full (visited on 2020-04-14), doi:https://doi.org/10.3389/fchem.2019.00048.

[83]

M. E. Beck, C. Riplinger, F. Neese, and G. Bistoni. Unraveling individual host-guest interactions in molecular recognition from first principles quantum mechanics: Insights into the nature of nicotinic acetylcholine receptor agonist binding. J. Comput. Chem., 42(5):293–302, 2021. URL: <Go to ISI>://WOS:000591776900001, doi:https://doi.org/10.1002/jcc.26454.

[84]

Michael Edmund Beck, Christoph Riplinger, Frank Neese, and Giovanni Bistoni. Unraveling individual host–guest interactions in molecular recognition from first principles quantum mechanics: Insights into the nature of nicotinic acetylcholine receptor agonist binding. J. Comput. Chem., 42(5):293–302, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26454, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.26454, doi:10.1002/jcc.26454.

[85]

A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys., 88:2547, 1988. URL: https://pubs.aip.org/aip/jcp/article-abstract/88/4/2547/91134/, doi:https://doi.org/10.1063/1.454033.

[86]

A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098, 1988. URL: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.38.3098, doi:https://doi.org/10.1103/PhysRevA.38.3098.

[87]

A. D. Becke. A new mixing of hartree-fock and local density-functional theories. J. Chem. Phys., 98:1372, 1993. URL: https://pubs.aip.org/aip/jcp/article-abstract/98/2/1372/821432/, doi:https://doi.org/10.1063/1.464304.

[88]

A. D. Becke. Density-functional thermochemistry. iii. the role of exact exchange. J. Chem. Phys., 98:5648, 1993. URL: https://ui.adsabs.harvard.edu/abs/1993JChPh..98.5648B/abstract, doi:https://doi.org/10.1063/1.464913.

[89]

A. D. Becke. Density-functional thermochemistry. v. systematic optimization of exchange-correlation functionals. J. Chem. Phys., 107:8554, 1997. URL: https://pubs.aip.org/aip/jcp/article-abstract/107/20/8554/478232/, doi:https://doi.org/10.1063/1.475007.

[90]

A. D. Becke and E. R. Johnson. A density-functional model of the dispersion interaction. J. Chem. Phys., 123:154101, 2005. URL: https://pubs.aip.org/aip/jcp/article-abstract/123/15/154101/347819/, doi:https://doi.org/10.1063/1.2065267.

[91]

A. Bencini and D. Gatteschi. X.alpha.-sw calculations of the electronic structure and magnetic properties of weakly coupled transition-metal clusters. the [cu2cl6]2- dimers. J. Am. Chem. Soc., 108:5763, 1980. URL: https://pubs.acs.org/doi/pdf/10.1021/ja00279a017, doi:https://doi.org/10.1021/ja00279a017.

[92]

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81(8):3684–3690, 1984. URL: https://pubs.aip.org/aip/jcp/article-abstract/81/8/3684/565473/, doi:https://doi.org/10.1063/1.448118.

[93]

G. Berghold, J. Hutter, and M. Parinello. Grid-free dft implementation of local and gradient-corrected xc functionals. Theor. Chem. Acc., 99:344, 1998. URL: https://link.springer.com/article/10.1007/s002140050344, doi:https://doi.org/10.1007/s002140050344.

[94]

A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preuss. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys., 80:1431–1441, 1993. URL: https://www.tandfonline.com/doi/abs/10.1080/00268979300103121, doi:https://doi.org/10.1080/00268979300103121.

[95]

S. Bernadotte, A. J. Atkins, and C. R. Jacob. J. Chem. Phys., 137:204106, 2012.

[96]

D. E. Bernholdt and R. J. Harrison. Large-scale correlated electronic structure calculations: the ri-mp2 method on parallel computers. Chem. Phys. Lett., 250:477, 1996. URL: https://www.sciencedirect.com/science/article/abs/pii/0009261496000541, doi:https://doi.org/10.1016/0009-2614(96)00054-1.

[97]

A. Berning, M. Schweizer, H.J. Werner, P. J. Knowles, and P. Palmieri. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions. Mol. Phys., 98:1823–1833, 2000. URL: https://www.tandfonline.com/doi/abs/10.1080/00268970009483386, doi:https://doi.org/10.1080/00268970009483386.

[98]

R. Berraud-Pache, F. Neese, G. Bistoni, and R. Izsak. Computational design of near-infrared fluorescent organic dyes using an accurate new wave function approach. J. Phys. Chem. Lett., 10(17):4822–4828, 2019. URL: <Go to ISI>://WOS:000484884300010, doi:https://doi.org/10.1021/acs.jpclett.9b02240.

[99]

R. Berraud-Pache, E. Santamaria-Aranda, B. de Souza, G. Bistoni, F. Neese, D. Sampedro, and R. Izsak. Redesigning donor-acceptor Stenhouse adduct photoswitches through a joint experimental and computational study. Chem. Sci., 12(8):2916–2924, 2021. URL: <Go to ISI>://WOS:000625958900018, doi:https://doi.org/10.1039/d0sc06575g.

[100]

Romain Berraud-Pache, Frank Neese, Giovanni Bistoni, and Róbert Izsák. Unveiling the photophysical properties of boron-dipyrromethene dyes using a new accurate excited state coupled cluster method. J. Chem. Theory Comput., 16(1):564–575, 2020. URL: https://doi.org/10.1021/acs.jctc.9b00559, doi:https://doi.org/10.1021/acs.jctc.9b00559.

[101]

K. Bhaskaran-Nair, O. Demel, J. Šmydke, and J. Pittner. J. Chem. Phys., 134:154106, 2011.

[102]

J. S. Binkley, J. A. Pople, and P. A. Dobosh. The calculation of spin-restricted single-determinant wavefunctions. Mol. Phys., 28:1423, 1974. URL: https://www.tandfonline.com/doi/abs/10.1080/00268977400102701, doi:https://doi.org/10.1080/00268977400102701.

[103]

J. S. Binkley, J. A. Pople, and W. J. Hehre. Self-consistent molecular orbital methods. 21. small split-valence basis sets for first-row elements. J. Am. Chem. Soc., 102:939, 1980. URL: https://pubs.acs.org/doi/pdf/10.1021/ja00523a008, doi:https://doi.org/10.1021/ja00523a008.

[104]

G. Bistoni, I. Polyak, M. Sparta, W. Thiel, and F. Neese. Toward accurate QM/MM reaction barriers with large QM regions using domain based pair natural orbital coupled cluster theory. J. Chem. Theory Comput., 14(7):3524–3531, 2018. URL: <Go to ISI>://WOS:000438654500015, doi:https://doi.org/10.1021/acs.jctc.8b00348.

[105]

Giovanni Bistoni. Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci., 10(3):e1442, 2020. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1442, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1442, doi:10.1002/wcms.1442.

[106]

Giovanni Bistoni, Alexander A. Auer, and Frank Neese. Understanding the role of dispersion in frustrated lewis pairs and classical lewis adducts: A domain-based local pair natural orbital coupled cluster study. Chem. Eur. J., 23(4):865–873, 2017.

[107]

Giovanni Bistoni, Christoph Riplinger, Yury Minenkov, Luigi Cavallo, Alexander A Auer, and Frank Neese. Treating subvalence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach. J. Chem. Theory Comput., 2017. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00352, doi:https://doi.org/10.1021/acs.jctc.7b00352.

[108]

Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural relaxation made simple. Phys. Rev. Lett., 97(17):170201, 10 2006. URL: https://link.aps.org/doi/10.1103/PhysRevLett.97.170201, doi:https://doi.org/10.1103/PhysRevLett.97.170201.

[109]

Ragnar Bjornsson and Michael Bühl. Modeling molecular crystals by QM/MM: Self-consistent electrostatic embedding for geometry optimizations and molecular property calculations in the solid. J. Chem. Theory Comput., 8(2):498–508, 2012. URL: https://doi.org/10.1021/ct200824r, doi:https://doi.org/10.1021/ct200824r.

[110]

J.P. Blaudeau, M. P. McGrath, L. A. Curtiss, and L. Radom. Extension of gaussian-2 (g2) theory to molecules containing third-row atoms k and ca. J. Chem. Phys., 107:5016, 1997. URL: https://pubs.aip.org/aip/jcp/article-abstract/107/13/5016/476733/, doi:https://doi.org/10.1063/1.474865.

[111]

P. M. Boerrigter, G. Te Velde, and E. J. Baerends. Three-dimensional numerical integration for electronic structure calculations. Int. J. Quant. Chem., 33:87, 1988. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560330204, doi:https://doi.org/10.1002/qua.560330204.

[112]

J. M. Bofill, H. Bono, and J. Rubio. Analysis of the convergence of the general coupling operator method for one-configuration-type wave functions. J. Comput. Chem., 19:368, 1998. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-987X(199802)19:3%3C368::AID-JCC10%3E3.0.CO;2-E, doi:https://doi.org/10.1002/(SICI)1096-987X(199802)19:3%3C368::AID-JCC10%3E3.0.CO;2-E.

[113]

Jonathan A. Bohmann, Frank Weinhold, and Thomas C. Farrar. Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations. J. Chem. Phys., 107(4):1173–1184, 1997. URL: https://doi.org/10.1063/1.474464, doi:10.1063/1.474464.

[114]

A. Bondi. J. Phys. Chem., 68:441–451, 1964.

[115]

G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Ann. Math. Statist., 29(2):610–611, 1958. doi:10.1214/aoms/1177706645.

[116]

Éric Brémond and Carlo Adamo. Seeking for parameter-free double-hybrid functionals: the PBE0-DH model. J. Chem. Phys., 135(2):024106, 2011.

[117]

Éric Brémond, Ángel José Pérez-Jiménez, Juan Carlos Sancho-García, and Carlo Adamo. J. Chem. Phys., 150:201102, 2019.

[118]

Éric Brémond, Juan Carlos Sancho-García, Ángel José Pérez-Jiménez, and Carlo Adamo. J. Chem. Phys., 141:031101, 2014.

[119]

Éric Brémond, Marika Savarese, Ángel José Pérez-Jiménez, Juan Carlos Sancho-García, and Carlo Adamo. J. Chem. Theory Comput., 14:4052–4062, 2018.

[120]

J. Brabec, J. Lang, M. Saitow, J. Pittner, F. Neese, and O. Demel. Domain-based local pair natural orbital version of mukherjee's state-specific coupled cluster method. J. Chem. Theory Comput., 14(3):1370–1382, 2018. URL: <Go to ISI>://WOS:000427661400021, doi:10.1021/acs.jctc.7b01184.

[121]

J. G. Brandenburg, C. Bannwarth, A. Hansen, and S. Grimme. B97-3c: A revised low-cost variant of the B97-D density functional method. J. Chem. Phys., 148(6):064104, 2018.

[122]

Jan Gerit Brandenburg, Christoph Bannwarth, Andreas Hansen, and Stefan Grimme. B97-3c: A revised low-cost variant of the B97-D density functional method. J. Chem. Phys., 148(6):064104, 2018. doi:10.1063/1.5012601.

[123]

B.H." Brandow. Effective Interactions and Operators in Nuclei. Volume 40. Springer, 1974.

[124]

C. M. Breneman and K. B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. J. Comput. Chem., 11:361–373, 1990. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540110311, doi:https://doi.org/10.1002/jcc.540110311.

[125]

F. W. Brobowicz and W. A. Goddard. In H. F. Schaefer III, editor, Methods of Electronic Structure Theory, pages 79. Plenum Press, 1977.

[126]

P. Bunting, M. Atanasov, E. Damgaard-Moller, M. Perfetti, I. Crassee, M. Orlita, J. Oyergaard, J. van Slageren, F. Neese, and J. Long. Linear cobalt(II) dialkyl complex with a non-Aufbau ground state and very large magnetic anisotropy. Abstr. Pap. Am. Chem. Soc., 2019. URL: <Go to ISI>://WOS:000525061501422.

[127]

P. C. Bunting, M. Atanasov, E. Damgaard-Moller, M. Perfetti, I. Crassee, M. Orlita, J. Overgaard, J. van Slageren, F. Neese, and J. R. Long. A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state. Science, 362(6421):1378–+, 2018. URL: <Go to ISI>://WOS:000453845000052, doi:10.1126/science.aat7319.

[128]

Markus Bursch, Hagen Neugebauer, Sebastian Ehlert, and Stefan Grimme. Dispersion corrected r²SCAN based global hybrid functionals: r²SCANh, r²SCAN0, and r²SCAN50. J. Chem. Phys., 156(13):134105, 2022. URL: https://pubs.aip.org/aip/jcp/article-abstract/156/13/134105/2840951/, doi:https://doi.org/10.1063/5.0086040.

[129]

Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys., 126(1):014101, 2007. URL: https://doi.org/10.1063/1.2408420, doi:10.1063/1.2408420.

[130]

Octav Caldararu, Martin A Olsson, Christoph Riplinger, Frank Neese, and Ulf Ryde. Binding free energies in the sampl5 octa-acid host–guest challenge calculated with dft-d3 and ccsd (t). J. Comput.-Aided Mol. Des., 31(1):87–106, 2017. URL: https://link.springer.com/article/10.1007/s10822-016-9957-5, doi:https://doi.org/10.1007/s10822-016-9957-5.

[131]

Eike Caldeweyher, Christoph Bannwarth, and Stefan Grimme. Extension of the D3 dispersion coefficient model. J. Chem. Phys., 147(3):034112, 2017. URL: https://pubs.aip.org/aip/jcp/article-abstract/147/3/034112/595235/, doi:https://doi.org/10.1063/1.4993215.

[132]

Eike Caldeweyher, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Christoph Bannwarth, and Stefan Grimme. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys., 150(15):154122, 2019. URL: https://doi.org/10.1063/1.5090222, arXiv:https://doi.org/10.1063/1.5090222, doi:https://doi.org/10.1063/1.5090222.

[133]

R. Cammi. Quantum cluster theory for the polarizable continuum model. i. the ccsd level with analytical first and second derivatives. J. Chem. Phys, 131:164104, 2009. URL: https://pubs.aip.org/aip/jcp/article-abstract/131/16/164104/71420/, doi:https://doi.org/10.1063/1.3245400.

[134]

Roberto Cammi, Benedetta Mennucci, and Jacopo Tomasi. Fast Evaluation of Geometries and Properties of Excited Molecules in Solution: A Tamm-Dancoff Model with Application to 4-Dimethylaminobenzonitrile. J. of Phys. Chem. A, 104(23):5631–5637, 06 2000. URL: https://doi.org/10.1021/jp000156l (visited on 2020-05-12), doi:10.1021/jp000156l.

[135]

Marco Campetella and Juan Sanz García. Following the evolution of excited states along photochemical reaction pathways. Journal of Computational Chemistry, 41(12):1156–1164, 2020. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26162, doi:10.1002/jcc.26162.

[136]

E. Cancès, Y. Maday, and B. Stamm. Domain decomposition for implicit solvation models. J. Chem. Phys, 139:054111, 2013. doi:https://doi.org/10.1063/1.4816767.

[137]

X. Cao and M. Dolg. Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J. Chem. Phys., 115:7348, 2001. URL: https://pubs.aip.org/aip/jcp/article-abstract/115/16/7348/458396/, doi:https://doi.org/10.1063/1.1406535.

[138]

X. Cao and M. Dolg. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct.: THEOCHEM, 581:139, 2002. doi:https://doi.org/10.1016/S0166-1280(01)00751-5.

[139]

X. Cao and M. Dolg. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct.: THEOCHEM, 673:203, 2004. doi:https://doi.org/10.1016/j.theochem.2003.12.015.

[140]

X. Cao, M. Dolg, and H. Stoll. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys., 118:487, 2003. doi:https://doi.org/10.1063/1.1521431.

[141]

R. Carbo and J. M. Riera. A General SCF Theory. Lecture Notes in Chemistry. Springer Verlag, 1978.

[142]

M. Caricato. Ccsd-pcm: improving upon the reference reaction field approximation at no cost. J. Chem. Phys, 135:074113, 2011. doi:https://doi.org/10.1063/1.3624373.

[143]

Kevin Carter-Fenk and John M. Herbert. State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions. Journal of Chemical Theory and Computation, 16(8):5067–5082, 2020. Publisher: American Chemical Society. doi:10.1021/acs.jctc.0c00502.

[144]

David Casanova and Anna I. Krylov. Spin-flip methods in quantum chemistry. Phys. Chem. Chem. Phys., 22(8):4326–4342, 02 2020. URL: https://pubs.rsc.org/en/content/articlelanding/2020/cp/c9cp06507e (visited on 2020-10-20), doi:10.1039/C9CP06507E.

[145]

M. Casanova-Páez and L. Goerigk. Assessing the tamm–dancoff approximation, singlet–singlet, and singlet–triplet excitations with the latest long-range corrected double-hybrid density functionals. J. Chem. Phys., 153:064106, 2020.

[146]

Marcos Casanova-Páez, Michael B. Dardis, and Lars Goerigk. ωB2PLYP & ωB2GPPLYP: the first two double-hybrid density functionals with long-range correction optimized for excitation energies. J. Chem. Theory Comput., 15:4735, 2019. URL: http://dx.doi.org/10.1021/acs.jctc.9b00013, doi:10.1021/acs.jctc.9b00013.

[147]

Marcos Casanova-Páez and Lars Goerigk. Time-dependent long-range-corrected double-hybrid density functionals with spin-component and spin-opposite scaling: A comprehensive analysis of singlet-singlet and singlet-triplet excitation energies. J. Chem. Theory Comput., 17(8):5165–5186, 2021. doi:10.1021/acs.jctc.1c00535.

[148]

M. E. Casida. Time-dependent density functional response theory for molecules. In D. P. Chong, editor, Recent Advances in Density Functional Methods, volume 1, pages 155–192. World Scientific, 1995.

[149]

Javier Cerezo, José Zuniga, Alberto Requena, Francisco J. Avila Ferrer, and Fabrizio Santoro. Harmonic Models in Cartesian and Internal Coordinates to Simulate the Absorption Spectra of Carotenoids at Finite Temperatures. J. Chem. Theory Comput., 9(11):4947–4958, 11 2013. URL: http://dx.doi.org/10.1021/ct4005849, doi:10.1021/ct4005849.

[150]

G. Chaban, M. W. Schmidt, and M. S. Gordon. Approximate second order method for orbital optimization of scf and mcscf wavefunctions. Theor. Chem. Acc., 97:88–95, 1997. doi:https://doi.org/10.1007/s002140050241.

[151]

J.-D. Chai and M. Head-Gordon. J. Chem. Phys., 128:084106, 2008.

[152]

Jeng-Da Chai and Martin Head-Gordon. Long-range corrected double-hybrid density functionals. J. Chem. Phys., 131(17):174105, 2009. URL: https://doi.org/10.1063/1.3244209, doi:10.1063/1.3244209.

[153]

K. Chakarawet, M. Atanasov, J. Marbey, P. C. Bunting, F. Neese, S. Hill, and J. R. Long. Strong electronic and magnetic coupling in m-4 (m = ni, cu) clusters via direct orbital interactions between low-coordinate metal centers. J. Am. Chem. Soc., 142(45):19161–19169, 2020. URL: <Go to ISI>://WOS:000588273900023, doi:10.1021/jacs.0c08460.

[154]

Uttam Chakraborty, Serhiy Demeshko, Franc Meyer, Christophe Rebreyend, Bas de Bruin, Mihail Atanasov, Frank Neese, Bernd Mühldorf, and Robert Wolf. Electronic Structure and Magnetic Anisotropy of an Unsaturated Cyclopentadienyl Iron(I) Complex with 15 Valence Electrons. Angew. Chem. Int. Ed., 56(27):7995–7999, 06 2017. doi:10.1002/anie.201702454.

[155]

G. K.-L. Chan. DMRG homepage. URL: http://www.princeton.edu/chemistry/chan/software/dmrg/.

[156]

G. K.-L. Chan. An algorithm for large scale density matrix renormalization group calculations. J. Chem. Phys., 120:3172, 2004. doi:https://doi.org/10.1063/1.1638734.

[157]

G. K.-L. Chan and M. Head-Gordon. Highly correlated calculations with a polynomial cost algorithm: a study of the density matrix renormalization group. J. Chem. Phys., 116:4462–4476, 2002. doi:https://doi.org/10.1063/1.1449459.

[158]

G. K.-L. Chan and S. Sharma. Ann. Rev. Phys. Chem., 62:465, 2011.

[159]

H. C. Chang, Y. H. Lin, C. Werle, F. Neese, W. Z. Lee, E. Bill, and S. F. Ye. Conversion of a fleeting open-shell iron nitride into an iron nitrosyl. Angew. Chem. Int. Ed., 58(49):17589–17593, 2019. URL: <Go to ISI>://WOS:000491791300001, doi:10.1002/anie.201908689.

[160]

H. C. Chang, B. Mondal, H. Y. Fang, F. Neese, E. Bill, and S. F. Ye. Electron paramagnetic resonance signature of tetragonal low spin Iron(V)-Nitrido and -Oxo complexes derived from the electronic structure analysis of heme and non-heme archetypes. J. Am. Chem. Soc., 141(6):2421–2434, 2019. URL: <Go to ISI>://WOS:000459222100035, doi:10.1021/jacs.8b11429.

[161]

A. Chantzis, J. K. Kowalska, D. Maganas, S. DeBeer, and F. Neese. Ab initio wave function-based determination of element specific shifts for the efficient calculation of x-ray absorption spectra of main group elements and first row transition metals. J. Chem. Theory Comput., 14(7):3686–3702, 2018. URL: <Go to ISI>://WOS:000438654500028, doi:10.1021/acs.jctc.8b00249.

[162]

Koushik Chatterjee and Alexander Yu. Sokolov. Extended Second-Order Multireference Algebraic Diagrammatic Construction Theory for Charged Excitations. J. Chem. Theory Comput., 16(10):6343–6357, 10 2020. URL: https://doi.org/10.1021/acs.jctc.0c00778, doi:10.1021/acs.jctc.0c00778.

[163]

A. Chatzis, J. K. Kowalska, D. Maganas, S. DeBeer, and F. Neese. Ab initio wave function-based determination of element specific shifts for the efficient calculation of x-ray absorption spectra of main group elements and first row transition metals. J. Chem. Theory Comput., 14(7):3686–3702, 2018. URL: https://pubs.acs.org/doi/10.1021/jacs.8b13313, doi:https://dx.doi.org/10.1021/acs.jctc.8b00249.

[164]

Houxian Chen, Menglin Liu, and Tianying Yan. Molecular multipoles and (hyper)polarizabilities from the buckingham expansion: revisited. Communications in Theoretical Physics, 72(7):075503, jun 2020. URL: https://dx.doi.org/10.1088/1572-9494/ab8a0d, doi:10.1088/1572-9494/ab8a0d.

[165]

Lan Cheng and Jürgen Gauss. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian. J. Chem. Phys., 135(8):084114, aug 2011. URL: http://aip.scitation.org/doi/10.1063/1.3624397, doi:10.1063/1.3624397.

[166]

Lan Cheng and Jürgen Gauss. Analytic second derivatives for the spin-free exact two-component theory. J. Chem. Phys., 135(24):244104, dec 2011. URL: https://doi.org/10.1063/1.3667202 http://aip.scitation.org/doi/10.1063/1.3667202, doi:10.1063/1.3667202.

[167]

Lan Cheng, Jürgen Gauss, and John F. Stanton. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. J. Chem. Phys., 139(5):054105, aug 2013. URL: https://doi.org/10.1063/1.4816130 http://aip.scitation.org/doi/10.1063/1.4816130, doi:10.1063/1.4816130.

[168]

L. F. Chibotaru and L. Ungur. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys., 137:064112, 2012.

[169]

Vijay Gopal Chilkuri, Serena DeBeer, and Frank Neese. Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model. Inorg. Chem., 56(17):10418–10436, 09 2017. doi:10.1021/acs.inorgchem.7b01371.

[170]

Vijay Gopal Chilkuri, Serena DeBeer, and Frank Neese. Ligand Field Theory and Angular Overlap Model Based Analysis of the Electronic Structure of Homovalent Iron–Sulfur Dimers. Inorg. Chem., 59(2):984–995, 01 2020. doi:10.1021/acs.inorgchem.9b00974.

[171]

Vijay Gopal Chilkuri and Frank Neese. Comparison of many-particle representations for selected-CI I: A tree based approach. J. Comput. Chem., 42(14):982–1005, 2021. doi:10.1002/jcc.26518.

[172]

Vijay Gopal Chilkuri and Frank Neese. Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations. J. Chem. Theory Comput., 17(5):2868–2885, 05 2021. doi:10.1021/acs.jctc.1c00081.

[173]

D. P. Chong and S. R. Langhoff. A modified coupled pair functional approach. J. Chem. Phys., 84:5606–5610, 1986. doi:https://doi.org/10.1063/1.449920.

[174]

Ove Christiansen, Poul Jø rgensen, and Christof Hättig. Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy. Int. J. Quantum Chem., 68:1–52, 1998. doi:https://doi.org/10.1002/(SICI)1097-461X(1998)68:1%3C1::AID-QUA1%3E3.0.CO;2-Z.

[175]

D. W. Clack. Indo mo calculations for first row transition metal complexes. Mol. Phys., 27:1513–1519, 1974. doi:https://doi.org/10.1080/00268977400101281.

[176]

D. W. Clack, N. S. Hush, and J. R. Yandle. All\textendashvalence electron cndo calculations on transition metal complexes. J. Chem. Phys., 57:3503, 1972. URL: https://pubs.aip.org/aip/jcp/article-abstract/57/8/3503/778222/, doi:https://doi.org/10.1063/1.1678785.

[177]

D. W. Clack and W. Smith. Clack, d.w., smith, w. molecular orbital calculations on transition metal complexes. Theor. Chim. Acta, 36:87–92, 1974. doi:https://doi.org/10.1007/BF00554339.

[178]

Aurora E. Clark and Ernest R. Davidson. P-Benzyne Derivatives That Have Exceptionally Small Singlet-Triplet Gaps and Even a Triplet Ground State. J. Org. Chem., 68(9):3387–3396, 05 2003. URL: https://doi.org/10.1021/jo026824b (visited on 2020-10-20), doi:10.1021/jo026824b.

[179]

T. Clark, J. Chandrasekhar, Spltznagel W. G., and P. v. R. Schleyer. Efficient diffuse function-augmented basis sets for anion calculations. iii. the 3-21+g basis set for first-row elements, li\textendashf . J. Comput. Chem., 4:294, 1983. doi:https://doi.org/10.1002/jcc.540040303.

[180]

P. Claverie, J. P. Daudey, J. Langlet, B. Pullman, D. Plazzola, and M. J. Huron. Studies of solvent effects. 1. discrete, continuum, and discrete –continuum models and their comparison for some simple cases: ammonium(1+) ion, methanol, and substituted ammonium(1+) ion. J. Phys. Chem., 82:405–418, 1978. doi:https://doi.org/10.1021/j100493a008.

[181]

E. Clementi and D. Raimondi. IBM Res. Note, 1963.

[182]

L. R. Collins, M. van Gastel, F. Neese, and A. Furstner. Enhanced electrophilicity of heterobimetallic bi-rh paddlewheel carbene complexes: A combined experimental, spectroscopic, and computational study. J. Am. Chem. Soc., 140(40):13042–13055, 2018. URL: <Go to ISI>://WOS:000447354800056, doi:10.1021/jacs.8b08384.

[183]

M. G. Cory and M. C. Zerner. Metal-ligand exchange coupling in transition-metal complexes. Chem. Rev., 91:813, 1991. doi:https://doi.org/10.1021/cr00005a009.

[184]

Hector H. Corzo, Ali Abou Taka, Aurora Pribram-Jones, and Hrant P. Hratchian. Using projection operators with maximum overlap methods to simplify challenging self-consistent field optimization. Journal of Computational Chemistry, 43(6):382–390, 2022. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26797, doi:10.1002/jcc.26797.

[185]

E. Coulaud, J.-P. Malrieu, N. Guihéry, and N. Ferré. Additive decomposition of the physical components of the magnetic coupling from broken symmetry density functional theory calculations. J. Chem. Theory Comput., 9(8):3429–3436, 2013. doi:10.1021/ct400305h.

[186]

Jeanne Crassous. Circularly Polarized Luminescence in Helicene and Helicenoid Derivatives, pages 53–97. Springer Singapore, Singapore, 2020. URL: https://doi.org/10.1007/978-981-15-2309-0_4, doi:10.1007/978-981-15-2309-0_4.

[187]

D. Cremer. In P. v. R. Schleyer, editor, Encyclopedia of Computational Chemistry, pages 1706. John Wiley and Sons, 1998.

[188]

L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning Jr., and L. Radom. Extension of gaussian –2 theory to molecules containing third –row atoms ga –kr. J. Chem. Phys., 103:6104–6113, 1995. doi:https://doi.org/10.1063/1.470438.

[189]

Larry A. Curtiss, Krishnan Raghavachari, and John A. Pople. Gaussian-2 theory using reduced møller-plesset orders. J. Chem. Phys., 98(2):1293–1298, 1993. URL: https://ui.adsabs.harvard.edu/abs/1993JChPh..98.1293C/abstract, doi:10.1063/1.464297.

[190]

C. Daniel, L. Gonzalez, and F. Neese. Quantum theory: The challenge of transition metal complexes. Phys. Chem. Chem. Phys., 23(4):2533–2534, 2021. URL: <Go to ISI>://WOS:000614634000001, doi:10.1039/d0cp90278k.

[191]

D. Datta, S. Kossmann, and F. Neese. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 175:114101, 2016. doi:https://doi.org/10.1063/1.4962369.

[192]

D. Datta, M. Saitow, B. Sandhofer, and F. Neese. Fe-57 mossbauer parameters from domain based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 2020. URL: <Go to ISI>://WOS:000596027300001, doi:10.1063/5.0022215.

[193]

Dipayan Datta, Liguo Kong, and Marcel Nooijen. A state-specific partially internally contracted multireference coupled cluster approach. J. Chem. Phys., 134(21):214116, 2011. doi:https://doi.org/10.1063/1.3592494.

[194]

Dipayan Datta and Marcel Nooijen. Multireference equation-of-motion coupled cluster theory. J. Chem. Phys., 137(20):204107, 2012. doi:https://doi.org/10.1063/1.4766361.

[195]

G. David, F. Wennmohs, F. Neese, and N. Ferre. Chemical tuning of magnetic exchange couplings using broken-symmetry density functional theory. Inorg. Chem., 57(20):12769–12776, 2018. URL: <Go to ISI>://WOS:000447680400039, doi:10.1021/acs.inorgchem.8b01970.

[196]

E. R. Davidson and A. E. Clark. Analysis of wave functions for open-shell molecules. Phys. Chem. Chem. Phys., 9:1881–1894, 2007. doi:https://doi.org/10.1039/B616481C.

[197]

Bernardo de Souza, Giliandro Farias, Frank Neese, and Robert Izsak. Efficient simulation of overtones and combination bands in Resonant Raman spectra. J. Chem. Phys., 150(21):accepted – still waiting for publication, 2019. URL: https://aip.scitation.org/doi/10.1063/1.5099247, doi:10.1063/1.5099247.

[198]

Bernardo de Souza, Giliandro Farias, Frank Neese, and Robert Izsak. Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics. J. Chem. Theory Comput., 15(3):1896–1904, 2019. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00841, doi:10.1021/acs.jctc.8b00841.

[199]

Bernardo de Souza, Frank Neese, and Robert Izsak. On the theoretical prediction of fluorescence rates from first principles using the path integral approach. J. Chem. Phys., 148(3):034104, 2018. URL: http://aip.scitation.org/doi/abs/10.1063/1.5010895 (visited on 2018-01-31), doi:10.1063/1.5010895.

[200]

S. DeBeer-George, T. Petrenko, and F. Neese. J. Phys. Chem. A, 112:12936, 2008.

[201]

S. DeBeer-George, T. Petrenko, and F. Neese. Inorg. Chim. Acta, 361:965, 2008.

[202]

O. Demel and J. Pittner. J. Chem. Phys., 124:144112, 2006.

[203]

Ondrej Demel, Dipayan Datta, and Marcel Nooijen. Additional global internal contraction in variations of multireference equation of motion coupled cluster theory. J. Chem. Phys., 138(13):134108, 2013.

[204]

J. des Cloizeaux. Extension d'une formule de lagrange \a des probl\emes de valeurs propres. Nucl. Phys., 20:321–346, 1960. doi:https://doi.org/10.1016/0029-5582(60)90177-2.

[205]

M. J. S. Dewar, J. A. Hashmall, and C. G. Venier. J. Am. Chem. Soc., 90:1953, 1968.

[206]

M. J. S. Dewar and W. Thiel. Theor. Chim. Acta, 46:89, 1977.

[207]

M. J. S. Dewar and W. Thiel. J. Am. Chem. Soc., 99:4899, 1977.

[208]

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. P. Stewart. J. Am. Chem. Soc., 107:3902, 1985.

[209]

J. D. Dill and J. A. Pople. J. Chem. Phys., 62:2921, 1975.

[210]

P. A. M. Dirac. Proc. Camb. Phil. Soc., 26:376, 1930.

[211]

R. Ditchfield. J. Chem. Phys., 56:5688, 1972.

[212]

A. Dittmer, G. L. Stoychev, D. Maganas, A. A. Auer, and F. Neese. Computation of nmr shielding constants for solids using an embedded cluster approach with dft, double-hybrid dft, and mp2. J. Chem. Theory Comput., 16(11):6950–6967, 2020. URL: <Go to ISI>://WOS:000592392800018, doi:10.1021/acs.jctc.0c00067.

[213]

Anneke Dittmer, Róbert Izsák, Frank Neese, and Dimitrios Maganas. Accurate band gap predictions of semiconductors in the framework of the similarity transformed equation of motion coupled cluster theory. Inorg. Chem., 58(14):9303–9315, 2019. URL: https://doi.org/10.1021/acs.inorgchem.9b00994, doi:10.1021/acs.inorgchem.9b00994.

[214]

K. D. Dobbs and W. J. Hehre. J. Comput. Chem., 7:359, 1986.

[215]

K. D. Dobbs and W. J. Hehre. J. Comput. Chem., 8:861 & 880, 1987.

[216]

John F Dobson. Alternative expressions for the Fermi hole curvature. J. Chem. Phys., 98(11):8870–8872, 06 1993. URL: https://doi.org/10.1063/1.464444, doi:10.1063/1.464444.

[217]

M. Dolg, P. Fulde, W. Küchle, C.-S. Neumann, and H. Stoll. J. Chem. Phys., 94:3011–3017, 1991.

[218]

M. Dolg, H. Stoll, H.-J. Flad, and H. Preuss. J. Chem. Phys., 97:1162–1173, 1992.

[219]

M. Dolg, H. Stoll, and H. Preuss. J. Chem. Phys., 90:1730–1734, 1989.

[220]

M. Dolg, H. Stoll, and H. Preuss. Theor. Chim. Acta, 85:441–450, 1993.

[221]

M. Dolg, H. Stoll, H. Preuss, and R. M. Pitzer. J. Phys. Chem., 97:5852–5859, 1993.

[222]

M. Dolg, H. Stoll, A. Savin, and H. Preuss. Theor. Chim. Acta, 75:173–194, 1989.

[223]

M. Dolg, U. Wedig, H. Stoll, and H. Preuss. J. Chem. Phys., 86:866–872, 1987.

[224]

A. Domingo, M.-A. Carvajal, C. de Graaf, K. Sivalingam, F. Neese, and C. Angeli. Theor. Chem. Acc., 131(9):1264, 2012.

[225]

B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin. J. Chem. Phys., 71:3396, 1979.

[226]

T. H. Dunning Jr. J. Chem. Phys., 90:1007, 1989.

[227]

M. Dupuis and H. F. King. Molecular symmetry and closed-shell scf calculations. i. Int. J. Quantum Chem., XI(4):613–625, 1977. URL: https://doi.org/10.1002/qua.560110408.

[228]

F. Duschisnky. Acta Physicochim. URSS, 7:551, 1937.

[229]

A. K. Dutta, F. Neese, and R. Izsak. Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation. Mol. Phys., 116(11):1428–1434, 2018. URL: <Go to ISI>://WOS:000431017000002, doi:10.1080/00268976.2017.1416201.

[230]

A. K. Dutta, M. Nooijen, F. Neese, and R. Izsak. Exploring the accuracy of a low scaling similarity transformed equation of motion method for vertical excitation energies. J. Chem. Theory Comput., 14(1):72–91, 2018. URL: <Go to ISI>://WOS:000419998300008, doi:10.1021/acs.jctc.7b00802.

[231]

A. K. Dutta, M. Saitow, B. Demoulin, F. Neese, and R. Izsak. A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states. J. Chem. Phys., 2019. URL: <Go to ISI>://WOS:000466698700028, doi:10.1063/1.5089637.

[232]

A. K. Dutta, M. Saitow, C. Riplinger, F. Neese, and R. Izsak. A nearlinear scaling equation of motion coupled cluster method for ionized states. J. Chem. Phys., 148(24):13, 2018. URL: <Go to ISI>://WOS:000437190300049, doi:10.1063/1.5029470.

[233]

Achintya Kumar Dutta, Frank Neese, and Róbert Izsák. Speeding up equation of motion coupled cluster theory with the chain of spheres approximation. J. Chem. Phys., 144(3):034102, 2016.

[234]

Achintya Kumar Dutta, Frank Neese, and Róbert Izsák. Towards a pair natural orbital coupled cluster method for excited states. J. Chem. Phys., 145(3):034102, 2016.

[235]

Achintya Kumar Dutta, Frank Neese, and Róbert Izsák. A simple scheme for calculating approximate transition moments within the equation of motion expectation value formalism. J. Chem. Phys., 146(21):214111, 2017.

[236]

Achintya Kumar Dutta, Marcel Nooijen, Frank Neese, and Róbert Izsák. Towards a pair natural orbital coupled cluster method for excited states. J. Chem. Phys., 2017.

[237]

Achintya Kumar Dutta, Marcel Nooijen, Frank Neese, and Róbert Izsák. Automatic active space selection for the similarity transformed equations of motion coupled cluster method. J. Chem. Phys., 146(7):074103, 2017.

[238]

K. G. Dyall. J. Chem. Phys., 102:4909–4918, 1995.

[239]

Anatoly Y. Dymarsky and Konstantin N. Kudin. Computation of the pseudorotation matrix to satisfy the Eckart axis conditions. J. Chem. Phys., 122(12):124103, 03 2005. URL: http://scitation.aip.org/content/aip/journal/jcp/122/12/10.1063/1.1864872, doi:10.1063/1.1864872.

[240]

Weinan E, Weiqing Ren, and Eric Vanden-Eijnden. String method for the study of rare events. Phys. Rev. B, 66(5):052301, 08 2002. URL: https://link.aps.org/doi/10.1103/PhysRevB.66.052301, arXiv:0205527 [cond-mat], doi:10.1103/PhysRevB.66.052301.

[241]

F. Eckert, P. Pulay, and H. J. Werner. J. Comput. Chem., 12:1473, 1997.

[242]

M. Eden and M. H. Levitt. J. Magn. Res., 132:220, 1998.

[243]

W. D. Edwards and M. C. Zerner. Theor. Chim. Acta, 72:347, 1987.

[244]

Sebastian Ehlert, Uwe Huniar, Jinliang Ning, James W. Furness, Jianwei Sun, Aaron D. Kaplan, John P. Perdew, and Jan Gerit Brandenburg. r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications. J. Chem. Phys., 154(6):061101, 2021. URL: https://doi.org/10.1063/5.0041008, arXiv:https://doi.org/10.1063/5.0041008, doi:10.1063/5.0041008.

[245]

K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs. Chem. Phys. Lett., 240:283, 1995.

[246]

K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs. Theor. Chem. Acc., 97:119, 1997.

[247]

Dennis M. Elking, Lalith Perera, Robert Duke, Thomas Darden, and Lee G. Pedersen. A finite field method for calculating molecular polarizability tensors for arbitrary multipole rank. Journal of Computational Chemistry, 32(15):3283–3295, 2011. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21914, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21914, doi:https://doi.org/10.1002/jcc.21914.

[248]

M. Ernzerhof. In D. P. Joubert, editor, Density Functionals: Theory and Applications. Springer Verlag, 1998.

[249]

Francesco A. Evangelista and Jürgen Gauss. An orbital-invariant internally contracted multireference coupled cluster approach. J. Chem. Phys., 134(11):114102, 03 2011. doi:10.1063/1.3559149.

[250]

W. Förner, J. Ladik, P. Otto, and J. Čížek. Coupled-cluster studies. II. The role of localization in correlation calculations on extended systems. Chem. Phys., 97:251–262, 1985. doi:https://doi.org/10.1016/0301-0104(85)87035-X.

[251]

Molecular Science Computing Facility. Extensible computational chemistry environment basis set database. 2000. URL: http://www.emsl.pnl.gov:2080/forms/basisform.html.

[252]

Shervin Fatehi, Ethan Alguire, Yihan Shao, and Joseph E. Subotnik. Analytic derivative couplings between configuration-interaction-singles states with built-in electron-translation factors for translational invariance. J. Chem. Phys., 135(23):234105, 12 2011. URL: https://aip.scitation.org/doi/10.1063/1.3665031 (visited on 2020-06-08), doi:10.1063/1.3665031.

[253]

Ignacio Fdez. Galván, Morgane Vacher, Ali Alavi, Celestino Angeli, Francesco Aquilante, Jochen Autschbach, Jie J. Bao, Sergey I. Bokarev, Nikolay A. Bogdanov, Rebecca K. Carlson, Liviu F. Chibotaru, Joel Creutzberg, Nike Dattani, Mickaël G. Delcey, Sijia S. Dong, Andreas Dreuw, Leon Freitag, Luis Manuel Frutos, Laura Gagliardi, Frédéric Gendron, Angelo Giussani, Leticia González, Gilbert Grell, Meiyuan Guo, Chad E. Hoyer, Marcus Johansson, Sebastian Keller, Stefan Knecht, Goran Kovačević, Erik Källman, Giovanni Li Manni, Marcus Lundberg, Yingjin Ma, Sebastian Mai, João Pedro Malhado, Per Åke Malmqvist, Philipp Marquetand, Stefanie A. Mewes, Jesper Norell, Massimo Olivucci, Markus Oppel, Quan Manh Phung, Kristine Pierloot, Felix Plasser, Markus Reiher, Andrew M. Sand, Igor Schapiro, Prachi Sharma, Christopher J. Stein, Lasse Kragh Sørensen, Donald G. Truhlar, Mihkel Ugandi, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Oskar Weser, Tomasz A. Wesołowski, Per-Olof Widmark, Sebastian Wouters, Alexander Zech, J. Patrick Zobel, and Roland Lindh. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput., 15(11):5925–5964, 2019.

[254]

J. Fernandez-Rico, J. M. Garcia de la Vega, and J. I. Fernandez Alonso. J. Comput. Chem., 1:33, 1983.

[255]

J. Fernandez-Rico, R. Lopez, A. Aguado, I. Ema, and G. Ramirez. J. Comput. Chem., 11:1284, 1998.

[256]

J. Fernandez-Rico, M. Paniagua, J. I. Fernandez Alonso, and P. Fantucci. J. Comput. Chem., 1:41, 1983.

[257]

N. Ferre, N. Guihery, and J.-P. Malrieu. Spin decontamination of broken-symmetry density functional theory calculations: deeper insight and new formulations. Phys. Chem. Chem. Phys., 17(22):14375–14382, 2015. doi:10.1039/C4CP05531D.

[258]

M. Feyereisen, G. Fitzerald, and A. Komornicki. Chem. Phys. Lett., 208:359, 1993.

[259]

M. Fiedler. Czech. Math. J., 23:298, 1973.

[260]

M. Fiedler. Czech. Math. J., 25:619, 1975.

[261]

D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll. J. Chem. Phys., 130:164108, 2009.

[262]

D. Figgen, G. Rauhut, M. Dolg, and H. Stoll. Chem. Phys., 311:227, 2005.

[263]

J. Finley, P.-A. Malmqvist, B. O. Roos, and L. Serrano-Andres. Chem. Phys. Lett., 288:299, 1998.

[264]

T. H. Fischer and J. Almlöf. J. Phys. Chem., 96:9768, 1992.

[265]

D. Flaig, M. Maurer, M. Hanni, K. Braunger, L. Kick, M. Thubauville, and C. Ochsenfeld. J. Chem. Theory Comput., 10:572, 2014.

[266]

R. Flores-Moreno, R. J. Alvares-Mendez, A. Vela, and A. M. Köster. J. Comput. Chem., 27:1009, 2006.

[267]

B. M. Floser, Y. Guo, C. Riplinger, F. Tuczek, and F. Neese. Detailed pair natural orbital-based coupled cluster studies of spin crossover energetics. J. Chem. Theory Comput., 16(4):2224–2235, 2020. URL: <Go to ISI>://WOS:000526313000020, doi:10.1021/acs.jctc.9b01109.

[268]

Nicolás Foglia, Bernardo De Souza, Dimitrios Maganas, and Frank Neese. Including vibrational effects in magnetic circular dichroism spectrum calculations in the framework of excited state dynamics. J. Chem. Phys., 158(15):154108, 04 2023. URL: https://doi.org/10.1063/5.0144845, doi:10.1063/5.0144845.

[269]

Nicolás O. Foglia, Dimitrios Maganas, and Frank Neese. Going beyond the electric-dipole approximation in the calculation of absorption and (magnetic) circular dichroism spectra including scalar relativistic and spin–orbit coupling effects. J. Chem. Phys., 157(8):084120, 2022. URL: https://doi.org/10.1063/5.0094709, arXiv:https://doi.org/10.1063/5.0094709, doi:10.1063/5.0094709.

[270]

Niclas Forsberg and Per-Å ke Malmqvist. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett., 274:196–204, 08 1997. doi:https://doi.org/10.1016/S0009-2614(97)00669-6.

[271]

M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople. J. Chem. Phys., 77:3654, 1982.

[272]

Yannick J Franzke and Florian Weigend. NMR Shielding Tensors and Chemical Shifts in Scalar-Relativistic Local Exact Two-Component Theory. J. Chem. Theory Comput., 15(2):1028–1043, feb 2019. URL: https://pubs.acs.org/sharingguidelines https://pubs.acs.org/doi/10.1021/acs.jctc.8b01084, doi:10.1021/acs.jctc.8b01084.

[273]

Yannick J. Franzke, Fabian Mack, and Florian Weigend. NMR Indirect Spin–Spin Coupling Constants in a Modern Quasi-Relativistic Density Functional Framework. J. Chem. Theory Comput., 17(7):3974–3994, jul 2021. URL: https://doi.org/10.1021/acs.jctc.1c00167 https://pubs.acs.org/doi/10.1021/acs.jctc.1c00167, doi:10.1021/acs.jctc.1c00167.

[274]

Yannick J. Franzke, Nils Middendorf, and Florian Weigend. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory. J. Chem. Phys., 148(10):104110, mar 2018. URL: https://doi.org/10.1063/1.5022153 http://aip.scitation.org/doi/10.1063/1.5022153, doi:10.1063/1.5022153.

[275]

Yannick J. Franzke, Robert Treß, Tobias M. Pazdera, and Florian Weigend. Error-consistent segmented contracted all-electron relativistic basis sets of double- and triple-zeta quality for NMR shielding constants. Phys. Chem. Chem. Phys., 21(30):16658–16664, 2019. URL: http://dx.doi.org/10.1039/C9CP02382H, doi:10.1039/C9CP02382H.

[276]

Yannick J. Franzke and Jason M. Yu. Hyperfine Coupling Constants in Local Exact Two-Component Theory. J. Chem. Theory Comput., 18(1):323–343, jan 2022. URL: https://pubs.acs.org/doi/10.1021/acs.jctc.1c01027, doi:10.1021/acs.jctc.1c01027.

[277]

M. J. Frisch, J. A. Pople, and J. S. Binkley. J. Chem. Phys., 80:3265, 1984.

[278]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople. Gaussian 98, Revision A.8. Gaussian, Inc., Pittsburgh PA, 1998.

[279]

P. Fuentealba, H. Preuss, H. Stoll, and L. von Szentpaly. Chem. Phys. Lett., 89:418–422, 1982.

[280]

P. Fuentealba, H. Stoll, L. von Szentpaly, P. Schwerdtfeger, and H. Preuss. J. Phys. B: At. Mol. Opt. Phys., 16:L323, 1983.

[281]

P. Fuentealba, L. von Szentpaly, H. Preuss, and H. Stoll. J. Phys. B: At. Mol. Opt. Phys., 18:1287, 1985.

[282]

James W Furness, Aaron D Kaplan, Jinliang Ning, John P Perdew, and Jianwei Sun. Accurate and numerically efficient r$^2$SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett., 11(19):8208–8215, 2020. URL: https://doi.org/10.1021/acs.jpclett.0c02405.

[283]

D. Ganyushin and F. Neese. J. Chem. Phys., 128:114117, 2008.

[284]

D. Ganyushin and F. Neese. J. Chem. Phys., 138:104113, 2013.

[285]

M. Garcia-Ratés, U. Becker, and F. Neese. Implicit solvation in domain based pair natural orbital coupled cluster (dlpno-ccsd) theory. J. Comput. Chem., 42(27):1959–1973, 2021. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.26726, doi:10.1002/jcc.26726.

[286]

M. Garcia-Ratés and F. Neese. Efficient implementation of the analytical second derivatives of hartree-fock and hybrid dft energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem., 40(20):1816–1828, 2019. URL: <Go to ISI>://WOS:000470923100002, doi:10.1002/jcc.25833.

[287]

M. Garcia-Ratés and F. Neese. Effect of the solute cavity on the solvation energy and its derivatives within the framework of the gaussian charge scheme. J. Comput. Chem., 41(9):922–939, 2020. URL: <Go to ISI>://WOS:000504862400001, doi:10.1002/jcc.26139.

[288]

T. Gatzenmeier, M. Turberg, D. Yepes, Y. W. Xie, F. Neese, G. Bistoni, and B. List. Scalable and highly diastereo- and enantioselective catalytic diels-alder reaction of alpha,beta-Unsaturated methyl esters. J. Am. Chem. Soc., 140(40):12671–12676, 2018. URL: <Go to ISI>://WOS:000447354800004, doi:10.1021/jacs.8b07092.

[289]

J. Gauss. Molecular properties. In J. Grotendorst, editor, Modern Methods and Algorithms of Quantum Chemistry, volume 3, 541–592. John von Neumann Institute for Computing, NIC Series, 2000.

[290]

Jürgen Gauss, Kenneth Ruud, and Trygve Helgaker. Perturbation‐dependent atomic orbitals for the calculation of spin‐rotation constants and rotational g tensors. The Journal of Chemical Physics, 105(7):2804–2812, aug 1996. URL: http://aip.scitation.org/doi/10.1063/1.472143, doi:10.1063/1.472143.

[291]

R. J. Gdanitz. Int. J. Quant. Chem., 85:281, 2001.

[292]

R. J. Gdanitz and R. Ahlrichs. Chem. Phys. Lett., 1988:413, 0143.

[293]

Thomas Gerlach, Simon Müller, Andrés González de Castilla, and Irina Smirnova. An open source COSMO-RS implementation and parameterization supporting the efficient implementation of multiple segment descriptors. Fluid Phase Equil., 560:113472, 2022.

[294]

Reza Ghafarian Shirazi, Frank Neese, Dimitrios A Pantazis, and Giovanni Bistoni. Physical nature of differential spin-state stabilization of carbenes by hydrogen and halogen bonding: A domain-based pair natural orbital coupled cluster study. J. Phys. Chem. A, 123(24):5081–5090, 2019.

[295]

Giovanni Ghigo, Björn O. Roos, and Per-Å ke Malmqvist. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett., 396:142–149, 09 2004. doi:https://doi.org/10.1016/j.cplett.2004.08.032.

[296]

D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan. J. Chem. Phys., 128:144117, 2008.

[297]

Soumen Ghosh, Achintya Kumar Dutta, Bernardo de Souza, Romain Berraud-Pache, and Róbert Izsák. A new density for transition properties within the similarity transformed equation of motion approach. Mol. Phys., 118(19-20):e1818858, 10 2020. URL: https://doi.org/10.1080/00268976.2020.1818858 (visited on 2021-03-01), doi:10.1080/00268976.2020.1818858.

[298]

Soumen Ghosh, Achintya Kumar Dutta, Bernardo de Souza, Romain Berraud-Pache, and Róbert Izsák. A new density for transition properties within the similarity transformed equation of motion approach. Mol. Phys., 0(0):e1818858, 2020. URL: https://doi.org/10.1080/00268976.2020.1818858, doi:10.1080/00268976.2020.1818858.

[299]

Andrew T. B. Gilbert, Nicholas A. Besley, and Peter M. W. Gill. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). The Journal of Physical Chemistry A, 112(50):13164–13171, December 2008. Publisher: American Chemical Society. URL: https://doi.org/10.1021/jp801738f, doi:10.1021/jp801738f.

[300]

P. M. W. Gill. Mol. Phys., 89:433, 1996.

[301]

P. M. W. Gill, B. G. Johnson, and J. A. Pople. Chem. Phys. Lett., 209:506, 1993.

[302]

M. K. Gilson and K. K. Irikura. J. Phys. Chem., pages 16304–16317, 2010. doi:10.1021/jp110434s.

[303]

A. P. Ginsberg. J. Am. Chem. Soc., 102:111, 1980.

[304]

L. Giordano, G. Pacchioni, T. Bredow, and J. F. Sanz. Surf. Sci., 471:21, 2001.

[305]

N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer. Can. J. Chem., 70:560, 1992.

[306]

Stefan Goedecker. Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. The Journal of Chemical Physics, 120(21):9911–9917, June 2004. Publisher: American Institute of Physics. URL: https://aip.scitation.org/doi/10.1063/1.1724816 (visited on 2022-04-22), doi:10.1063/1.1724816.

[307]

L. Goerigk and S. Grimme. J. Chem. Theory Comput., 6:107, 2010.

[308]

L. Goerigk and S. Grimme. J. Chem. Theory Comput., 7:291–309, 2011.

[309]

L. Goerigk and S. Grimme. Phys. Chem. Chem. Phys., 13:6670, 2011.

[310]

L. Moellmann Goerigk and S. Grimme. Phys. Chem. Chem. Phys., 11:4611, 2009.

[311]

Lars Goerigk and Stefan Grimme. J. Chem. Phys., 132:184103, 2010.

[312]

Lars Goerigk, Andreas Hansen, Christoph Bauer, Stephan Ehrlich, Asim Najibi, and Stefan Grimme. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys., 19(48):32184–32215, 2017. doi:10.1039/C7CP04913G.

[313]

M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre. J. Am. Chem. Soc., 104:2797, 1983.

[314]

H. C. Gottschalk, A. Poblotzki, M. Fatima, D. A. Obenchain, C. Perez, J. Antony, A. A. Auer, L. Baptista, D. M. Benoit, G. Bistoni, F. Bohle, R. Dahmani, D. Firaha, S. Grimme, A. Hansen, M. E. Harding, M. Hochlaf, C. Holzer, G. Jansen, W. Klopper, W. A. Kopp, L. C. Kroger, K. Leonhard, M. M. Al-Mogren, H. Mouhib, F. Neese, X. N. Pereira, M. Prakash, I. S. Ulusoy, R. A. Mata, M. A. Suhm, and M. Schnell. The first microsolvation step for furans: New experiments and benchmarking strategies. J. Chem. Phys., 152(16):17, 2020. URL: <Go to ISI>://WOS:000531832400001, doi:10.1063/5.0004465.

[315]

H. C. Gottschalk, A. Poblotzki, M. A. Suhm, M. M. Al-Mogren, J. Antony, A. A. Auer, L. Baptista, D. M. Benoit, G. Bistoni, F. Bohle, R. Dahmani, D. Firaha, S. Grimme, A. Hansen, M. E. Harding, M. Hochlaf, C. Holzer, G. Jansen, W. Klopper, W. A. Kopp, L. C. Kroger, K. Leonhard, H. Mouhib, F. Neese, M. N. Pereira, I. S. Ulusoy, A. Wuttke, and R. A. Mata. The furan microsolvation blind challenge for quantum chemical methods: First steps. J. Chem. Phys., 148(1):13, 2018. URL: <Go to ISI>://WOS:000419394500013, doi:10.1063/1.5009011.

[316]

M. Grüning, O. V. Gritsenko, S. J. A. Gisbergen, and E. J. Baerends. J. Chem. Phys., 114:652, 2001.

[317]

L Greengard and V Rokhlin. A fast algorithm for particle simulations. Journal of Computational Physics, 73(2):325–348, 1987. URL: https://www.sciencedirect.com/science/article/pii/0021999187901409, doi:https://doi.org/10.1016/0021-9991(87)90140-9.

[318]

S. Grimme. J. Chem. Phys., 118:9095–9102, 2003.

[319]

S. Grimme. J. Comput. Chem., 25:1463, 2004.

[320]

S. Grimme. J. Chem. Phys., 124:034108, 2006.

[321]

S. Grimme. J. Comput. Chem., 27:1787, 2006.

[322]

S. Grimme. Chem. Eur. J., 18:9955–9964, 2012.

[323]

S. Grimme. J. Chem. Phys., 138:244104, 2013.

[324]

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. J. Chem. Phys., 132:154104, 2010.

[325]

S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen. J. Chem. Phys., 143:054107, 2015.

[326]

S. Grimme, S. Ehrlich, and L. Goerigk. J. Comput. Chem., 32:1456, 2011.

[327]

S. Grimme and A. Hansen. A practicable real-space measure and visualization of static electron-correlation effects. Angew. Chem. Int. Ed., 54:12308–12313, 2015.

[328]

S. Grimme and F. Neese. J. Phys. Chem., 127:154116, 2007.

[329]

Stefan Grimme. AK Grimme homepage. URL: http://www.thch.uni-bonn.de/tc/grimme.

[330]

Stefan Grimme. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput., 15(5):2847–2862, 2019. doi:10.1021/acs.jctc.9b00143.

[331]

Stefan Grimme, Christoph Bannwarth, Sebastian Dohm, Andreas Hansen, Jana Pisarek, Philipp Pracht, Jakob Seibert, and Frank Neese. Fully automated quantum-chemistry-based computation of Spin–Spin-Coupled nuclear magnetic resonance spectra. Angew. Chem. Int. Ed., 56(46):14763–14769, 2017. doi:10.1002/anie.201708266.

[332]

Stefan Grimme, Christoph Bannwarth, and Philip Shushkov. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-Block elements (z = 1-86). J. Chem. Theory Comput., 13(5):1989–2009, 2017. doi:10.1021/acs.jctc.7b00118.

[333]

Stefan Grimme, Andreas Hansen, Sebastian Ehlert, and Jan-Michael Mewes. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. J. Chem. Phys., 154(6):064103, 2021. URL: https://doi.org/10.1063/5.0040021, arXiv:https://doi.org/10.1063/5.0040021, doi:10.1063/5.0040021.

[334]

Quantum Chemistry Group. TurboMole basis sets. ftp.chemie.uni-karlsruhe.de/pub, since 1988.

[335]

M. F. Guest and V. R. Saunders. Mol. Phys., 28:819, 1974.

[336]

Sheng Guo, Mark A. Watson, Weifeng Hu, Qiming Sun, and Garnet Kin-Lic Chan. N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene). J. Chem. Theory Comput., 12(4):1583–1591, 04 2016. doi:10.1021/acs.jctc.5b01225.

[337]

Y. Guo, W. Li, and S. Li. Improved cluster-in-molecule local correlation approach for electron correlation calculation of large systems. J. Phys. Chem. A, 118(39):8996–9004, 2014. doi:https://doi.org/10.1021/jp501976x.

[338]

Y. Guo, F. Pavošević, K. Sivalingam, U. Becker, E. F. Valeev, and F. Neese. Sparsemaps—a systematic infrastructure for reduced-scaling electronic structure methods. vi. linear-scaling explicitly correlated n-electron valence state perturbation theory with pair natural orbital. J. Chem. Phys., 2023.

[339]

Y. Guo, C. Riplinger, D. G. Liakos, U. Becker, M. Saitow, and F. Neese. Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory dlpno-ccsd(t-0/t). J. Chem. Phys., 2020. URL: <Go to ISI>://WOS:000519813300005, doi:10.1063/1.5127550.

[340]

Yang Guo, Ute Becker, and Frank Neese. Comparison and combination of “direct” and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories. J. Chem. Phys., 148(12):124117, 2018. doi:10.1063/1.5021898.

[341]

Yang Guo, Christoph Riplinger, Ute Becker, Dimitrios G. Liakos, Yury Minenkov, Luigi Cavallo, and Frank Neese. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J. Chem. Phys., 148(1):011101, 2018. doi:10.1063/1.5011798.

[342]

Yang Guo, Kantharuban Sivalingam, Christian Kollmar, and Frank Neese. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. J. Chem. Phys., 154(21):214113, 06 2021. doi:10.1063/5.0051218.

[343]

Yang Guo, Kantharuban Sivalingam, and Frank Neese. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J. Chem. Phys., 154(21):214111, 06 2021. doi:10.1063/5.0051211.

[344]

Yang Guo, Kantharuban Sivalingam, Edward F. Valeev, and Frank Neese. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J. Chem. Phys., 144(9):094111, 03 2016. doi:10.1063/1.4942769.

[345]

Yang Guo, Kantharuban Sivalingam, Edward F. Valeev, and Frank Neese. Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12). J. Chem. Phys., 147(6):064110, 08 2017. doi:10.1063/1.4996560.

[346]

M. Häser and R. Ahlrichs. J. Comput. Chem., 10:104, 1989.

[347]

U. Häuß ermann, M. Dolg, H. Stoll, and H. Preuss. Mol. Phys., 78:1211–1224, 1993.

[348]

M. Hülsen, A. Weigand, and M. Dolg. Theor. Chem. Acc., 122:23, 2009.

[349]

Ida-Marie Hø yvik, Branislav Jansik, and Poul Jø rgensen. Trust region minimization of orbital localization functions. J. Chem. Theory Comput., 8(9):3137–3146, 2012. doi:10.1021/ct300473g.

[350]

J. Hachmann, W. Cardoen, and G. K.-L. Chan. J. Chem. Phys., 125:144101, 2006.

[351]

Diptarka Hait and Martin Head-Gordon. Orbital optimized density functional theory for electronic excited states. J. Phys. Chem. Lett., 12:4517–4529, 5 2021. doi:10.1021/acs.jpclett.1c00744.

[352]

S. Haldar, C. Riplinger, B. Demoulin, F. Neese, R. Izsak, and A. K. Dutta. Multilayer approach to the ip-eom-dlpno-ccsd method: theory, implementation, and application. J. Chem. Theory Comput., 15(4):2265–2277, 2019. URL: <Go to ISI>://WOS:000464475500015, doi:10.1021/acs.jctc.8b01263.

[353]

T. P. Hamilton and P. Pulay. J. Chem. Phys., 84:5728, 1986.

[354]

B. Hammer, L. B. Hansen, and J. K. Nø rskov. Phys. Rev. B, 59:7413, 1999.

[355]

C. Hampel, K. A. Peterson, and H. J. Werner. Chem. Phys. Lett., 190:1, 1992.

[356]

C. Hampel and H. J. Werner. J. Chem. Phys., 104:6286, 1996.

[357]

Matthias Hanauer and Andreas Köhn. Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. J. Chem. Phys., 134(20):204111, 05 2011. doi:10.1063/1.3592786.

[358]

N. C. Handy and A. J. Cohen. Mol. Phys., 99:403, 2001.

[359]

N. C. Handy, P. J. Knowles, and K. Somasundram. Theor. Chem. Acc., 68:87, 1985.

[360]

N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari, and G. W. Trucks. Chem. Phys. Lett., 164:185, 1989.

[361]

A. Hansen, D. G. Liakos, and F. Neese. J. Chem. Phys., 135:214102, 2011.

[362]

D. J. Harding, P. Gruene, M. Haertelt, G. Meijer, A. Fielicke, S. M. Hamilton, W. S. Hopkins, S. R. Mackenzie, S. P. Neville, and T. R. Walsh. Probing the structures of gas-phase rhodium cluster cations by far-infrared spectroscopy. J. Chem. Phys., 133(21):214304, 2010. doi:10.1063/1.3509778.

[363]

P. C. Hariharan and J. A. Pople. Theor. Chim. Acta, 28:213, 1973.

[364]

John E. Harriman. Theoretical Foundations of Electron Spin Resonance: Physical Chemistry: A Series of Monographs. Academic Press, 1978. ISBN 978-1483175855.

[365]

J. N. Harvey, M. Aschi, H. Schwarz, and W. Koch. Theor. Chem. Acc., 99:95, 1998.

[366]

Remco W. A. Havenith, Peter R. Taylor, Celestino Angeli, Renzo Cimiraglia, and Kenneth Ruud. Calibration of the n-electron valence state perturbation theory approach. J. Chem. Phys., 120:4619, 2004. doi:10.1063/1.1645243.

[367]

P. J. Hay and W. R. Wadt. J. Chem. Phys., 82:270 & 284 & 299, 1985.

[368]

W. M. Haynes, D. R. Lide, and T. J. Bruno. Handbook of Chemistry and Physics. CRC Press, 95th edition, 2014. ISBN 978-1-4822-0868-9.

[369]

M. Head-Gordon. Chem. Phys. Lett., 372:508, 2003.

[370]

M. Head-Gordon and J. A. Pople. Chem. Phys. Lett., 153:503, 1988.

[371]

M. Head-Gordon, R. A. Rico, M. Oumi, and T. J. Lee. Chem. Phys. Lett., 219:21–29, 1994.

[372]

W. J. Hehre, R. Ditchfield, and J. A. Pople. J. Chem. Phys., 56:2257, 1972.

[373]

W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople. J. Chem. Phys., 52:2769, 1970.

[374]

W. J. Hehre, R. F. Stewart, and J. A. Pople. J. Chem. Phys., 51:2657, 1969.

[375]

T. Helgaker, M. Jaszuński, and K. Ruud. Chem. Rev., 99:293, 1999.

[376]

T. Helgaker and P. R. Taylor. In D. R. Yarkony, editor, Modern Electronic Structure Theory, pages 725. World Scientific, 1995.

[377]

Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular electronic-structure theory, chapter 9. John Wiley & Sons, 2013.

[378]

Trygve U. Helgaker, Jan Almlöf, Hans Jørgen Aa. Jensen, and Poul Jørgensen. Molecular Hessians for large-scale MCSCF wave functions. J. Chem. Phys., 84(11):6266–6279, 1986. doi:10.1063/1.450771.

[379]

Benjamin Helmich-Paris. Benchmarks for electronically excited states with CASSCF methods. J. Chem. Theory Comput., 15(7):4170–4179, 2019. URL: https://doi.org/10.1021/acs.jctc.9b00325, doi:10.1021/acs.jctc.9b00325.

[380]

Benjamin Helmich-Paris. CASSCF linear response calculations for large open-shell molecules. J. Chem. Phys., 150(17):174121, 2019. URL: https://doi.org/10.1063/1.5092613, doi:10.1063/1.5092613.

[381]

Benjamin Helmich-Paris. A trust-region augmented Hessian implementation for restricted and unrestricted Hartree–Fock and Kohn–Sham methods. J. Chem. Phys., 154(16):164104, 2021. URL: https://doi.org/10.1063/5.0040798, doi:10.1063/5.0040798.

[382]

Benjamin Helmich-Paris. A trust-region augmented Hessian implementation for state-specific and state-averaged CASSCF wave functions. J. Chem. Phys., 156(20):204104, 2022. URL: https://doi.org/10.1063/5.0090447, arXiv:https://doi.org/10.1063/5.0090447, doi:10.1063/5.0090447.

[383]

Benjamin Helmich-Paris, Bernardo de Souza, Frank Neese, and Róbert Izsák. An improved chain of spheres for exchange algorithm. J. Chem. Phys., 155(10):104109, 2021. doi:10.1063/5.0058766.

[384]

G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys., 113(22):9978–9985, 2000.

[385]

G. Henkelman, B.P. Uberuaga, and H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 113(22):9901–9904, 2000.

[386]

Laura Hernández-Martínez, Eric Brémond, Angel J. Pérez-Jiménez, Emilio San-Fabián, Carlo Adamo, and Juan C. Sancho-García. Nonempirical (double-hybrid) density functionals applied to atomic excitation energies: a systematic basis set investigation. Int. J. Quantum Chem., 120:e26193, 2020. URL: https://onlinelibrary.wiley.com/doi/10.1002/qua.26193, doi:https://doi.org/10.1002/qua.26193.

[387]

R. H. Hertwig and W. Koch. Chem. Phys. Lett., 268:345, 1997.

[388]

G Herzberg. Infrared and Raman Spectra. Van Nostrand Reinhold, 1945.

[389]

B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. J. Chem. Theory Comput., 4:435, 2008.

[390]

Bernd A. Hess, Christel M. Marian, Ulf Wahlgren, and Odd Gropen. Chem. Phys. Lett., 251:365–371, 1996.

[391]

J. L. Heully and J.-P. Malrieu. J. Mol. Struct.: THEOCHEM, 768:53, 2006.

[392]

J. Hillenbrand, M. van Gastel, E. Bill, F. Neese, and A. Furstner. Isolation of a homoleptic non-oxo Mo(V) alkoxide complex: Synthesis, structure, and electronic properties of penta-tert-butoxymolybdenum. J. Am. Chem. Soc., 142(38):16392–16402, 2020. URL: <Go to ISI>://WOS:000575684100032, doi:10.1021/jacs.0c07073.

[393]

So Hirata and Martin Head-Gordon. Time–Dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett., 314:291–299, 1999.

[394]

F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta, 44:129–138, 1977.

[395]

R. Hockney. Methods Comp. Phys., 9:136–211, 1970.

[396]

Manuel Hodecker, Malgorzata Biczysko, Andreas Dreuw, and Vincenzo Barone. Simulation of vacuum uv absorption and electronic circular dichroism spectra of methyl oxirane: the role of vibrational effects. Journal of Chemical Theory and Computation, 12(6):2820–2833, 2016. URL: https://doi.org/10.1021/acs.jctc.6b00121, doi:10.1021/acs.jctc.6b00121.

[397]

W.-M. Hoe, A. J. Cohen, and N. C. Handy. Chem. Phys. Lett., 341:319, 2001.

[398]

T. Holmgaard List, N. Saue and P. Norman. Rotationally averaged linear absorption spectra beyond the electric-dipole approximation. Mol. Phys., 115(1-2):63–74, 2017. doi:10.1080/00268976.2016.1187773.

[399]

H. Horn, H. Wei, M. Häser, M. Ehrig, and R. Ahlrichs. J. Comput. Chem., 12:1058, 1991.

[400]

W. Hujo and S. Grimme. J. Chem. Theory Comput., 2011. doi:dx.doi.org/10.1021/ct200644w.

[401]

W. Hujo and S. Grimme. Phys. Chem. Chem. Phys., 13:13942, 2011.

[402]

T. F. Hunter and R. F. Wyatt. Intersystem crossing in anthracene. Chem. Phys. Lett., 6(3):221–224, 1970. doi:10.1016/0009-2614(70)80224-X.

[403]

L .M. J. Huntington, M. Krupička, F. Neese, and R. Izsák. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted hartree-fock reference for applications to high-spin open-shell systems. J. Chem. Phys., 147:174104, 2017.

[404]

L. M. J. Huntington, A. Hansen, F. Neese, and M. Nooijen. J. Chem. Phys., 136:064101, 2012.

[405]

L. M. J. Huntington and M. Nooijen. J. Chem. Phys., 133:184109, 2010.

[406]

L. M. J. Huntington and M. Nooijen. J. Chem. Phys., 142:194111, 2015.

[407]

L. M. J. Huntington and M. Nooijen. J. Chem. Theory Comput., 12:114, 2016.

[408]

Marcella Iannuzzi, Alessandro Laio, and Michele Parrinello. Efficient exploration of reactive potential energy surfaces using Car–Parrinello molecular dynamics. Phys. Rev. Lett., 90(23):238302, 2003. doi:10.1103/PhysRevLett.90.238302.

[409]

G. Igel-Mann, H. Stoll, and H. Preuss. Mol. Phys., 65:1321–1328, 1988.

[410]

H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao. J. Chem. Phys., 115:3540–3544, 2001.

[411]

Mark A. Iron and Trevor Janes. Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange–Correlation Functionals: The MOBH35 Benchmark Database. J. Phys. Chem. A, 123(17):3761–3781, 05 2019. URL: https://doi.org/10.1021/acs.jpca.9b01546 (visited on 2020-09-15), doi:10.1021/acs.jpca.9b01546.

[412]

Kazuhiro Ishida, Keiji Morokuma, and Andrew Komornicki. The intrinsic reaction coordinate. An ab initio calculation for HNC\textrightarrow HCN and H-+CH4\textrightarrow CH4+H-. J. Chem. Phys., 66(5):2153–2156, 1977. doi:10.1063/1.434152.

[413]

Naoya Iwahara and Liviu F. Chibotaru. Exchange interaction between $j$ multiplets. Physical Review B, 91:174438, May 2015. URL: https://link.aps.org/doi/10.1103/PhysRevB.91.174438, doi:10.1103/PhysRevB.91.174438.

[414]

Naoya Iwahara, Liviu Ungur, and Liviu F. Chibotaru. \~\~J-pseudospin states and the crystal field of cubic systems. Phys. Rev. B, 98(5):054436, 08 2018. URL: https://link.aps.org/doi/10.1103/PhysRevB.98.054436, doi:10.1103/PhysRevB.98.054436.

[415]

R. Izsak and F. Neese. J. Chem. Phys., 135:144105, 2011.

[416]

H. Jónsson, G. Mills, and K.W. Jacobsen. Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific Publishing Company, 1998.

[417]

Poul Jø rgensen, Hans Jø rgen Aagaard Jensen, and Jeppe Olsen. Linear response calculations for large scale multiconfiguration self-consistent field wave functions. J. Chem. Phys., 89(6):3654–3661, 1988.

[418]

K. Jankowski and J. Paldus. Applicability of coupled-pair theories to quasidegenerate electronic states: A model study. Int. J. Quantum Chem., 18(5):1243–1269, 11 1980. doi:10.1002/qua.560180511.

[419]

F. Jensen. Introduction to Computational Chemistry. Wiley, 1999.

[420]

B. Jeziorski and H. J. Monkhorst. Phys. Rev. A, 24:1668–1681, 1981.

[421]

S. Jiang, D. Maganas, N. Levesanos, E. Ferentinos, S. Haas, K. Thirunavukkuarasu, J. Krzystek, M. Dressel, L. Bogani, F. Neese, and P. Kyritsis. J. Am. Chem. Soc., 137:12923, 2015.

[422]

B. G. Johnson, P. M. W. Gill, and J. A. Pople. J. Chem. Phys., 98:5612, 1993.

[423]

B. G. Johnson, P. M. W. Gill, and J. A. Pople. Chem. Phys. Lett., 220:377, 1994.

[424]

E. R. Johnson and A. D. Becke. J. Chem. Phys., 123:024101, 2005.

[425]

E. R. Johnson and A. D. Becke. J. Chem. Phys., 124:174104, 2006.

[426]

E. Bright Wilson Jr, J. C. Decius, and Paul C. Cross. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. Dover Publications, revised ed. edition edition, 03 1980. ISBN 978-0-486-63941-3.

[427]

J. Jung, S. T. Loffler, J. Langmann, F. W. Heinemann, E. Bill, G. Bistoni, W. Scherer, M. Atanasov, K. Meyer, and F. Neese. Dispersion forces drive the formation of uranium-alkane adducts. J. Am. Chem. Soc., 142(4):1864–1870, 2020. URL: <Go to ISI>://WOS:000510531900033, doi:10.1021/jacs.9b10620.

[428]

Julie Jung, Mihail Atanasov, and Frank Neese. Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. Inorg. Chem., 56(15):8802–8816, 08 2017. doi:10.1021/acs.inorgchem.7b00642.

[429]

P. Jurečka, J. Šponer, J. Černý, and P. Hobza. Phys. Chem. Chem. Phys., 8:1985, 2006.

[430]

Johannes Kästner, Hans Martin Senn, Stephan Thiel, Nikolaj Otte, and Walter Thiel. QM/MM free-energy perturbation compared to thermodynamic integration and umbrella sampling: Application to an enzymatic reaction. J. Chem. Theory Comput., 2(2):452–461, 2006. doi:10.1021/ct050252w.

[431]

H. J. Köhler and F. Birnstock. Z. Chem., 5:196, 1972.

[432]

W. Küchle, M. Dolg, H. Stoll, and H. Preuss. Mol. Phys., 74:1245–1263, 1991.

[433]

W. Küchle, M. Dolg, H. Stoll, and H. Preuss. J. Chem. Phys., 100:7535–7542, 1994.

[434]

V. Kairys and J.D. Head. Geometry optimization of charged molecules in an external electric field applied to F-$\odot $ H2O and I-$\odot $ H2O. J. Phys. Chem. A, 102(8):1365–1370, 1998.

[435]

Jaroslaw Kalinowski, Frank Wennmohs, and Frank Neese. Arbitrary angular momentum electron repulsion integrals with graphical processing units: application to the resolution of identity hartree–fock method. J. Chem. Theory Comput., 13(7):3160–3170, 2017.

[436]

A. Karton, A Tarnopolsky, J.-F. Lamère, G. C. Schatz, and J. M. L. Martin. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J. Phys. Chem. A, 112:12868, 2008. URL: https://pubs.acs.org/doi/abs/10.1021/jp801805p, doi:https://doi.org/10.1021/jp801805p.

[437]

M. Kaupp, P. v. R. Schleyer, H. Stoll, and H. Preuss. J. Chem. Phys., 94:1360–1366, 1991.

[438]

M. Keilwerth, J. Hohenberger, F. W. Heinemann, J. Sutter, A. Scheurer, H. Y. Fang, E. Bill, F. Neese, S. F. Ye, and K. Meyer. A series of iron nitrosyl complexes Fe-NO(6-9) and a fleeting Fe-NO(10) intermediate en route to a metalacyclic iron nitrosoalkane. J. Am. Chem. Soc., 141(43):17217–17235, 2019. URL: <Go to ISI>://WOS:000493866300028, doi:10.1021/jacs.9b08053.

[439]

R. A. Kendall, T. H. Dunning Jr, and R. J. Harrison. J. Chem. Phys., 96:6769, 1992.

[440]

R. A. Kendall and H. A. Früchtl. Theor. Chem. Acc., 97:158, 1997.

[441]

Mikaël Kepenekian, Vincent Robert, and Boris Le Guennic. What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures? J. Chem. Phys., 131:114702, 09 2009. doi:https://doi.org/10.1063/1.3211020.

[442]

Manoj K. Kesharwani, Brina Brauer, and Jan M. L. Martin. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A, 119(9):1701–1714, 03 2015. URL: https://doi.org/10.1021/jp508422u (visited on 2020-04-14), doi:10.1021/jp508422u.

[443]

Abhishek Khedkar and Michael Roemelt. Active Space Selection Based on Natural Orbital Occupation Numbers from n-Electron Valence Perturbation Theory. J. Chem. Theory Comput., 15:3522–3536, 2019.

[444]

H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr. J. Chem. Phys., 47:1936, 1967.

[445]

A. Klamt and F. Eckert. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equil., 172:43–72, 2000. doi:https://doi.org/10.1016/S0378-3812(00)00357-5.

[446]

A. Klamt and Schüürmann. J. Chem. Soc. Perkin Trans. 2, pages 799, 1993.

[447]

Andreas Klamt. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem., 99:2224–2235, 1995.

[448]

Andreas Klamt, Jonas Volker, Thorsten Bürger, and John C. W. Lohrenz. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A, 102:5074–5085, 1998.

[449]

G. Knizia. J. Chem. Theory Comput., 9:4834–4843, 2013.

[450]

P. J. Knowles, J. S. Andrews, R. D. Amos, N. C. Handy, and J. A. Pople. Chem. Phys. Lett., 186:130, 1991.

[451]

W. Koch and M. C. Holthausen. A Chemist's Guide to Density Functional Theory. Wiley-VCH, 2000.

[452]

C. Kollmar. J. Chem. Phys., 105:8204, 1996.

[453]

C. Kollmar. Int. J. Quant. Chem., 62:617, 1997.

[454]

C. Kollmar and A. Hesselmann. Theor. Chem. Acc., 127:311, 2010.

[455]

C. Kollmar and F. Neese. Mol. Phys., 108:2449, 2010.

[456]

C. Kollmar and F. Neese. J. Chem. Phys., 135:064103, 2011.

[457]

C. Kollmar and F. Neese. J. Chem. Phys., 135:084102, 2011.

[458]

Christian Kollmar, Kantharuban Sivalingam, Yang Guo, and Frank Neese. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J. Chem. Phys., 155(23):234104, 12 2021.

[459]

Christian Kollmar, Kantharuban Sivalingam, Benjamin Helmich-Paris, Celestino Angeli, and Frank Neese. A perturbation-based super-CI approach for the orbital optimization of a CASSCF wave function. J. Comput. Chem., 40:1463–1470, 2019. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.25801, doi:10.1002/jcc.25801.

[460]

Christian Kollmar, Kantharuban Sivalingam, and Frank Neese. An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. J. Chem. Phys., 152(21):214110, 06 2020. doi:10.1063/5.0010019.

[461]

Christian Kollmar, Kantharuban Sivalingam, and Frank Neese. An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. J. Chem. Phys., 152(21):214110, 06 2020. doi:10.1063/5.0010019.

[462]

S. Koseki, M. S. Gordon, M. W. Schmidt, and N. Matsunaga. J. Phys. Chem., 99:12764–12772, 1995.

[463]

S. Koseki, M. W. Schmidt, and M. S. Gordon. J. Phys. Chem., 96:10768–10772, 1992.

[464]

S. Koseki, M. W. Schmidt, and M. S. Gordon. J. Phys. Chem. A, 102:10430–10435, 1998.

[465]

S. Kossmann and F. Neese. Chem. Phys. Lett., 481:240–243, 2009.

[466]

M. Kotzian, N. Rösch, and M. C. Zerner. Theor. Chim. Acta, 81:201, 1992.

[467]

Sebastian Kozuch, David Gruzman, and Jan M. L. Martin. DSD-BLYP: A general purpose double hybrid density functional including spin component scaling and dispersion correction. J. Phys. Chem. C, 114(48):20801–20808, 2010. doi:10.1021/jp1070852.

[468]

Sebastian Kozuch and Jan M. L. Martin. DSD-PBEP86: in search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys., 13(45):20104–20107, 2011. doi:10.1039/C1CP22592H.

[469]

Sebastian Kozuch and Jan M. L. Martin. Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. J. Comput. Chem., 34(27):2327–2344, 2013. doi:10.1002/jcc.23391.

[470]

M. Krack and A. M. Köster. J. Chem. Phys., 108:3226, 1998.

[471]

V. Krewald, F. Neese, and D. A. Pantazis. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. J. Inorg. Biochem., 2019. URL: <Go to ISI>://WOS:000488146900034, doi:10.1016/j.jinorgbio.2019.110797.

[472]

R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 72:650, 1980.

[473]

R. Krishnan, M. J. Frisch, and J. A. Pople. J. Chem. Phys., 72:4244, 1980.

[474]

M. Krupička, K. Sivalingam, L. Huntington, A. A. Auer, and F. Neese. A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. J. Comput. Chem., 38:1853, 2017.

[475]

H. Kruse, L. Goerigk, and S. Grimme. J. Org. Chem., 23:10824, 2012.

[476]

H. Kruse and S. Grimme. J. Chem. Phys., 16:136, 2012.

[477]

Adam Kubas, Felix Hoffmann, Alexander Heck, Harald Oberhofer, Marcus Elstner, and Jochen Blumberger. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations. The Journal of Chemical Physics, 140(10):104105, March 2014. URL: https://doi.org/10.1063/1.4867077 (visited on 2024-06-18), doi:10.1063/1.4867077.

[478]

Adam Kubas, Johannes Noak, Annette Trunschke, Robert Schlögl, Frank Neese, and Dimitrios Maganas. A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance raman spectra of m1 movo x. Chem. Sci., 8(9):6338–6353, 2017.

[479]

Adam Kubas, Max Verkamp, Josh Vura-Weis, Frank Neese, and Dimitrios Maganas. Restricted open-shell configuration interaction singles study on m-and l-edge x-ray absorption spectroscopy of solid chemical systems. J. Chem. Theory Comput., 14(8):4320–4334, 2018.

[480]

A. Kumar, F. Neese, and E. Valeev. Near-linear scaling explicitly correlated coupled cluster singles and doubles method based on an open-shell domain-based local pair natural orbitals. Abstr. Pap. Am. Chem. Soc., 2019. URL: <Go to ISI>://WOS:000525061504143.

[481]

A. Kumar, F. Neese, and E. F. Valeev. Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. J. Chem. Phys., 153(9):17, 2020. URL: <Go to ISI>://WOS:000570176400001, doi:10.1063/5.0012753.

[482]

Shankar Kumar, John M. Rosenberg, Djamal Bouzida, Robert H. Swendsen, and Peter A. Kollman. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem., 13(8):1011–1021, 1992. doi:10.1002/jcc.540130812.

[483]

R. Kutteh. Rattle recipe for general holonomic constraints: angle and torsion constraints. CCP5 Newslett., 1998.

[484]

W. Kutzelnigg, U. Fleischer, and M. Schindler. The IGLO-Method: Ab Initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities. Volume 23. Springer Verlag, 1990.

[485]

W. Kutzelnigg and D. Mukherjee. J. Chem. Phys., 107:432, 1997.

[486]

D. Laikov and C. Van Wüllen. Software. URL: http://www.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids/.

[487]

Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A., 99(20):12562–12566, 2002. doi:10.1073/pnas.202427399.

[488]

J. Lang, J. Brabec, M. Saitow, J. Pittner, F. Neese, and O. Demel. Perturbative triples correction to domain-based local pair natural orbital variants of mukherjee's state specific coupled cluster method. Phys. Chem. Chem. Phys., 21(9):5022–5038, 2019. URL: <Go to ISI>://WOS:000461722700029, doi:10.1039/c8cp03577f.

[489]

Lucas Lang. Development of New Multistate Multireference Perturbation Theory Methods and Their Application. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2020.

[490]

Lucas Lang, Mihail Atanasov, and Frank Neese. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. J. Phys. Chem. A, 124(5):1025–1037, 02 2020. doi:10.1021/acs.jpca.9b11227.

[491]

Lucas Lang and Frank Neese. Spin-dependent properties in the framework of the dynamic correlation dressed complete active space method. J. Chem. Phys., 150:104104, 2019.

[492]

Lucas Lang, Enrico Ravera, Giacomo Parigi, Claudio Luchinat, and Frank Neese. Solution of a puzzle: High-level quantum-chemical treatment of pseudocontact chemical shifts confirms classic semiempirical theory. J. Phys. Chem. Lett., 11(20):8735–8744, 2020.

[493]

Lucas Lang, Kantharuban Sivalingam, and Frank Neese. The combination of multipartitioning of the Hamiltonian with canonical Van Vleck perturbation theory leads to a Hermitian variant of quasidegenerate N-electron valence perturbation theory. J. Chem. Phys., 152(1):014109, 01 2020. doi:10.1063/1.5133746.

[494]

A. W. Lange and J. M. Herbert. J. Chem. Phys., 133:244111, 2010.

[495]

W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett. Chem. Phys. Lett., 187:21, 1991.

[496]

V. I. Lebedev. Zh. Vychisl. Mat. Fiz., 15:48, 1975.

[497]

V. I. Lebedev. Zh. Vychisl. Mat. Fiz., 16:293, 1976.

[498]

V. I. Lebedev and D. N. Laikov. Dokl. Math., 59:477, 1999.

[499]

V. I. Lebedev and A. L. Skorokhodov. Sov. Phys.-Dokl., 45:587, 1992.

[500]

M. H. Lechner, A. Papadopoulos, K. Sivalingam, A. A. Auer, A. Koslowski, U. Becker, F. Wennmohs, and F. Neese. Code generation in ORCA: Progress, Efficiency and Tight integration. Phys. Chem. Chem. Phys., 26(21):15205–15220, 2024.

[501]

Marvin H. Lechner, Róbert Izsák, Marcel Nooijen, and Frank Neese. A perturbative approach to multireference equation-of-motion coupled cluster. Mol. Phys., pages e1939185, 06 2021. URL: http://doi.org/10.1080/00268976.2021.1939185, doi:10.1080/00268976.2021.1939185.

[502]

C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 37:785, 1988.

[503]

K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth. Phys. Rev. B, 82:081101, 2010.

[504]

T. J. Lee and P. R. Taylor. Int. J. Quant. Chem. Symp., 23:199, 1989.

[505]

S. Lehtola. J. Chem. Phys., 152:134108, 2020.

[506]

S. Lehtola, C. Steigemann, MJT Oliveira, and MAL Marques. Recent developments in libxc – A comprehensive library of functionals for density functional theory. SoftwareX, 7:1–5, 2019. URL: https://doi.org/10.1016/j.softx.2017.11.002.

[507]

T. Leininger, A. Berning, A. Nicklass, H. Stoll, H.-J. Werner, and H.-J. Flad. Chem. Phys., 217:19, 1997.

[508]

T. Leininger, A. Nicklass, W. Küchle, H. Stoll, M. Dolg, and A. Bergner. Chem. Phys. Lett., 255:274, 1996.

[509]

T. Leininger, A. Nicklass, H. Stoll, M. Dolg, and P. Schwerdtfeger. J. Chem. Phys., 105:1052–1059, 1996.

[510]

Gianluca Levi, Aleksei V Ivanov, and Hannes Jónsson. Variational density functional calculations of excited states via direct optimization. J. Chem. Theory Comput., 16(11):6968–6982, 2020. doi:10.1021/acs.jctc.0c00597.

[511]

Mathieu Lewin. J. Math. Chem., 44:967, 2008.

[512]

Tiago Leyser da Costa Gouveia, Dimitrios Maganas, and Frank Neese. Restricted open-shell hartree–fock method for a general configuration state function featuring arbitrarily complex spin-couplings. The Journal of Physical Chemistry A, 128(25):5041–5053, 2024. PMID: 38886177. URL: https://doi.org/10.1021/acs.jpca.4c00688, arXiv:https://doi.org/10.1021/acs.jpca.4c00688, doi:10.1021/acs.jpca.4c00688.

[513]

H. Li and J. H. Jensen. Theor. Chem. Acc., 107:211, 2002.

[514]

S. Li, J. Ma, and Y. Jiang. Linear scaling local correlation approach for solving the coupled cluster equations of large systems. J. Comput. Chem., 23:237–244, 2002. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.10003, doi:https://doi.org/10.1002/jcc.10003.

[515]

S. Li, J. Shen, W. Li, and Y. Jiang. An efficient implementation of the “Cluster-in-Molecule” approach for local electron correlation calculations. J. Chem. Phys., 125:074109, 2006. doi:https://doi.org/10.1063/1.2244566.

[516]

W. Li, P. Piecuch, J. Gour, and S. Li. Local correlation calculations using standard and renormalized coupled-cluster approaches. J. Chem. Phys., 131:114109, 2009. doi:https://doi.org/10.1063/1.3218842.

[517]

Zhendong Li and Wenjian Liu. First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels. J. Chem. Phys., 141(1):014110, 2014. URL: https://doi.org/10.1063/1.4885817, arXiv:https://doi.org/10.1063/1.4885817, doi:10.1063/1.4885817.

[518]

D. G. Liakos, Y. Guo, and F. Neese. Comprehensive benchmark results for the domain based local pair natural orbital coupled cluster method (dlpno-ccsd(t)) for closed- and open-shell systems. J. Phys. Chem. A, 124(1):90–100, 2020. URL: <Go to ISI>://WOS:000507151000012, doi:10.1021/acs.jpca.9b05734.

[519]

D. G. Liakos and F. Neese. J. Phys. Chem. A, 116:4801–4816, 2012.

[520]

Dimitrios G. Liakos, Andreas Hansen, and Frank Neese. J. Chem. Theory Comput., 7:76, 2011.

[521]

Dimitrios G. Liakos, R. Izsák, E. F. Valeev, and Frank Neese. Mol. Phys., 111:2653, 2013.

[522]

Dimitrios G. Liakos, Manuel Sparta, Manoj K. Kesharwani, Jan M. L. Martin, and Frank Neese. J. Chem. Theory Comput., 11:1525, 2015.

[523]

I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll. J. Chem. Phys., 122:104103, 2005.

[524]

I. S. Lim, H. Stoll, and P. Schwerdtfeger. J. Chem. Phys., 124:034107, 2006.

[525]

Y.-S. Lin, G.-D. Li, S.-P. Mao, and J.-D. Chai. Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput., 9:263–272, 2013. URL: https://pubs.acs.org/doi/abs/10.1021/ct300715s, doi:https://doi.org/10.1021/ct300715s.

[526]

Roland Lindh, Anders Bernhardsson, and Martin Schütz. Force-constant weighted redundant coordinates in molecular geometry optimizations. Chem. Phys. Lett., 303(5):567–575, 04 1999. URL: http://www.sciencedirect.com/science/article/pii/S000926149900247X, doi:10.1016/S0009-2614(99)00247-X.

[527]

M. E. Lines. Orbital angular momentum in the theory of paramagnetic clusters. J. Chem. Phys., 55:2977, 1971.

[528]

N. H. List, T. R. L. Melin, M. van Horn, and T. Saue. Beyond the electric-dipole approximation in simulations of x-ray absorption spectroscopy: Lessons from relativistic theory. J. Chem. Phys., 152(18):184110, 05 2020. doi:10.1063/5.0003103.

[529]

Z. Liu, O. Demel, and M. Nooijen. Multireference Equation of Motion Coupled Cluster study of atomic excitation spectra of first-row transition metal atoms Cr, Mn, Fe and Co. J. Mol. Spectrosc., 311:54, 2015.

[530]

Z. Liu, L. M. J. Huntington, and M. Nooijen. Mol. Phys., 113:2999, 2015.

[531]

Rohini C. Lochan and Martin Head-Gordon. Orbital-optimized opposite-spin scaled second-order correlation: An economical method to improve the description of open-shell molecules. J. Chem. Phys., 126(16):164101, 04 2007. doi:10.1063/1.2718952.

[532]

F. London. Phys. Radium, 8:397, 1937.

[533]

Derek A. Long. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley, 1 edition edition, 11 2001. ISBN 978-0-471-49028-9.

[534]

Q. Lu, F. Neese, and G. Bistoni. Formation of agostic structures driven by london dispersion. Angew. Chem. Int. Ed., 57(17):4760–4764, 2018. URL: <Go to ISI>://WOS:000430165700058, doi:10.1002/anie.201801531.

[535]

Q. Lu, F. Neese, and G. Bistoni. London dispersion effects in the coordination and activation of alkanes in sigma-complexes: a local energy decomposition study. Phys. Chem. Chem. Phys., 21(22):11569–11577, 2019. URL: <Go to ISI>://WOS:000472218500051, doi:10.1039/c9cp01309a.

[536]

Qing Lu, Frank Neese, and Giovanni Bistoni. Formation of agostic structures driven by london dispersion. Angew. Chem. Int. Ed., 57(17):4760–4764, 2018.

[537]

Qing Lu, Frank Neese, and Giovanni Bistoni. London dispersion effects in the coordination and activation of alkanes in σ-complexes: a local energy decomposition study. Phys. Chem. Chem. Phys., 21(22):11569–11577, 2019.

[538]

Dmitry I. Lyakh, Monika Musiał, Victor F. Lotrich, and Rodney J. Bartlett. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem. Rev., 112(1):182–243, 12 2012. doi:10.1021/cr2001417.

[539]

Klaus Müller and Leo D. Brown. Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor. Chem. Acc., 53(1):75–93, 1979. doi:10.1007/BF00547608.

[540]

Marcel Müller, Andreas Hansen, and Stefan Grimme. Ωb97x-3c: a composite range-separated hybrid dft method with a molecule-optimized polarized valence double-ζ basis set. J. Chem. Phys., 158(1):014103, 2023. URL: https://doi.org/10.1063/5.0133026, arXiv:https://doi.org/10.1063/5.0133026, doi:10.1063/5.0133026.

[541]

Marcel Müller, Andreas Hansen, and Stefan Grimme. An atom-in-molecule adaptive polarized valence single-ζ atomic orbital basis for electronic structure calculations. J. Chem. Phys., 159:164108, 2023.

[542]

Thomas Müller and Hans Lischka. Simultaneous calculation of Rydberg and valence excited states of formaldehyde. Theor. Chem. Acc., 106:369–378, 2001.

[543]

J. Mášik and I. Hubač. Adv. Quant. Chem., 31:75–104, 1998.

[544]

Satoshi Maeda, Koichi Ohno, and Keiji Morokuma. Updated Branching Plane for Finding Conical Intersections without Coupling Derivative Vectors. J. Chem. Theory Comput., 6(5):1538–1545, 05 2010. URL: https://doi.org/10.1021/ct1000268 (visited on 2021-01-07), doi:10.1021/ct1000268.

[545]

D. Maganas, S. DeBeer, and F. Neese. Pair natural orbital restricted open-shell configuration interaction (PNO-ROCIS) approach for calculating x-ray absorption spectra of large chemical systems. J. Phys. Chem. A, 122(5):1215–1227, 2018. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jpca.7b10880, doi:https://doi.org/10.1021/acs.jpca.7b10880.

[546]

D. Maganas, J. K. Kowalska, C. Van Stappen, S. DeBeer, and F. Neese. Mechanism of L-2,L-3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V-(IV)/V-(III) complexes. J. Chem. Phys., 152(11):15, 2020. URL: <Go to ISI>://WOS:000521227700001, doi:10.1063/1.5129029.

[547]

D. Maganas, S. Sottini, P. Kyritsis, E. J. J. Groenen, and F. Neese. Inorg. Chem., 50:8741, 2011.

[548]

Dimitrios Maganas, Serena DeBeer, and Frank Neese. A restricted open configuration interaction with singles method to calculate valence-to-core resonant x-ray emission spectra: a case study. Inorg. Chem., 56(19):11819–11836, 2017.

[549]

Dimitrios Maganas, Joanna K. Kowalska, Marcel Nooijen, Serena DeBeer, and Frank Neese. Comparison of multireference ab initio wavefunction methodologies for X-ray absorption edges: A case study on [Fe(II/III)Cl4]2–/1– molecules. J. Chem. Phys., 150(10):104106, 2019. URL: https://pubs.aip.org/aip/jcp/article-abstract/150/10/104106/1058894/, doi:https://doi.org/10.1063/1.5051613.

[550]

U. S. Mahapatra, B. Datta, and D. Mukherjee. J. Chem. Phys., 110:6171–6188, 1999.

[551]

Sebastian Mai, Felix Plasser, Mathias Pabst, Frank Neese, Andreas Köhn, and Leticia González. Surface hopping dynamics including intersystem crossing using the algebraic diagrammatic construction method. J. Chem. Phys., 147(18):184109, 2017.

[552]

M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar. J. Phys. Chem. A, 113:5806–5812, 2009.

[553]

E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, and H. Jónsson. Global transition path search for dislocation formation in Ge on Si (001). Comput. Phys. Commun., 205:13–21, 2016.

[554]

Narbe Mardirossian and Martin Head-Gordon. Phys. Chem. Chem. Phys., 16(21):9904–9924, 2014. URL: http://dx.doi.org/10.1039/C3CP54374A, doi:10.1039/C3CP54374A.

[555]

Narbe Mardirossian and Martin Head-Gordon. J. Chem. Phys., 142:074111, 2015. URL: https://aip.scitation.org/doi/10.1063/1.4907719, doi:10.1063/1.4907719.

[556]

Narbe Mardirossian and Martin Head-Gordon. J. Chem. Phys., 144:214110, 2016. URL: https://aip.scitation.org/doi/10.1063/1.4952647, doi:10.1063/1.4952647.

[557]

Narbe Mardirossian and Martin Head-Gordon. Survival of the most transferable at the top of Jacob's ladder: Defining and testing the ωB97M(2) double hybrid density functional. J. Chem. Phys., 148(24):241736, jun 2018. URL: https://doi.org/10.1063/1.5025226, doi:10.1063/1.5025226.

[558]

A. V. Marenich, C. J. Cramer, and D. G. Truhlar. J. Phys. Chem. B, 113:6378, 2009.

[559]

A.V. Marenich, G.D. Hawkins, D.A. Liotard, and D.G. Cramer. GESOL - version 2008. URL: https://comp.chem.umn.edu/gesol.

[560]

J. M. L. Martin and A. Sundermann. J. Chem. Phys., 114:3408, 2001.

[561]

Richard L. Martin. Natural transition orbitals. J. Chem. Phys., 118:4775–4777, 2003.

[562]

Glenn J. Martyna, Michael L. Klein, and Mark Tuckerman. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 97(4):2635–2643, 1992. doi:10.1063/1.463940.

[563]

Glenn J. Martyna, Mark E. Tuckerman, Douglas J. Tobias, and Michael L. Klein. Explicit reversible integrators for extended systems dynamics. Mol. Phys., 87(5):1117–1157, 1996. doi:10.1080/00268979600100761.

[564]

J. Mason. Solid State Nucl. Magn. Res., 2:285, 1993.

[565]

Rémi Maurice, Roland Bastardis, Coen de Graaf, Nicolas Suaud, Talal Mallah, and Nathalie Guihéry. Universal theoretical approach to extract anisotropic spin hamiltonians. J. Chem. Theory Comput., 5:2977–2984, 2009.

[566]

Sergey N. Maximoff and Gustavo E. Scuseria. Nuclear magnetic resonance shielding tensors calculated with kinetic energy density-dependent exchange-correlation functionals. Chem. Phys. Lett., 390(4-6):408–412, 06 2004. URL: http://linkinghub.elsevier.com/retrieve/pii/S0009261404005949, doi:10.1016/j.cplett.2004.04.049.

[567]

I. Mayer. Chem. Phys. Lett., 97:270, 1983.

[568]

I. Mayer. Int. J. Quant. Chem., 26:151, 1984.

[569]

I. Mayer. Theor. Chim. Acta, 67:315, 1985.

[570]

I. Mayer. In Z. B. Maksić, editor, Modelling of Structure and Properties of Molecules. John Wiley and Sons, 1987.

[571]

Nicholas J. Mayhall, Krishnan Raghavachari, and Hrant P. Hratchian. ONIOM-based QM:QM electronic embedding method using Löwdin atomic charges: Energies and analytic gradients. J. Chem. Phys., 132(11):114107, 2010. URL: https://doi.org/10.1063/1.3315417, doi:10.1063/1.3315417.

[572]

A. D. McLean and G. S. Chandler. J. Chem. Phys., 72:5639, 1980.

[573]

A. D. McLean and M. Yoshimine. Theory of Molecular Polarizabilities. The Journal of Chemical Physics, 47(6):1927–1935, 09 1967. URL: https://doi.org/10.1063/1.1712220, arXiv:https://pubs.aip.org/aip/jcp/article-pdf/47/6/1927/18852261/1927\_1\_online.pdf, doi:10.1063/1.1712220.

[574]

R. McWeeny. Mol. Phys., 28:1273, 1974.

[575]

R. McWeeny. Methods of Molecular Quantum Mechanics. 2nd Edition. Academic Press, 1992.

[576]

M. Melander, K. Laasonen, and H. Jónsson. Removing external degrees of freedom from transition-state search methods using quaternions. J. Chem. Theory Comput., 11(3):1055–1062, 2015.

[577]

M. C. R. Melo, R. C. Bernardi, T. Rudack, M. Scheurer, C. Riplinger, J. C. Phillips, J. D. C. Maia, G. B. Rocha, J. V. Ribeiro, J. E. Stone, F. Neese, K. Schulten, and Z. Luthey-Schulten. NAMD goes quantum: an integrative suite for hybrid simulations. Nat. Methods, 15(5):351–+, 2018. URL: <Go to ISI>://WOS:000431372700019, doi:10.1038/nmeth.4638.

[578]

Adamo Meo, Trouillas and Sancho-Garcia. J. Chem. Phys., 139:164104, 2013.

[579]

B. Metz, M. Schweizer, H. Stoll, M. Dolg, and W. Liu. Theor. Chem. Acc., 104:22, 2000.

[580]

B. Metz, H. Stoll, and M. Dolg. J. Chem. Phys., 113:2563, 2000.

[581]

F. Meyer and F. Neese. Impact of modern spectroscopy in inorganic chemistry. Inorg. Chem., 59(19):13805–13806, 2020. URL: <Go to ISI>://WOS:000580381700001, doi:10.1021/acs.inorgchem.0c02755.

[582]

Wilfried Meyer. Ionization energies of water from pno-ci calculations. International Journal of Quantum Chemistry, 5(S5):341–348, 1971.

[583]

Wilfried Meyer. Pno–ci studies of electron correlation effects. i. configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane. The Journal of Chemical Physics, 58(3):1017–1035, 1973.

[584]

Wilfried Meyer. Configuration Expansion by Means of Pseudonatural Orbitals. In Henry F. Schaefer III, editor, Methods of Electronic Structure Theory, pages 413–446. Springer US, 01 1977.

[585]

G. Mills, H. Jónsson, and G.K. Schenter. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci., 324(2-3):305–337, 1995.

[586]

Yury Minenkov, Giovanni Bistoni, Christoph Riplinger, Alexander A Auer, Frank Neese, and Luigi Cavallo. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation. Phys. Chem. Chem. Phys., 19(14):9374–9391, 2017.

[587]

A. V. Mitin, G. Hirsch, and R. Buenker. Chem. Phys. Lett., 259:151, 1996.

[588]

A. V. Mitin, G. Hirsch, and R. Buenker. J. Comput. Chem., 18:1200, 1997.

[589]

Mariusz P. Mitoraj, Artur Michalak, and Tom Ziegler. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput., 5(4):962–975, 2009.

[590]

B. Mondal, F. Neese, E. Bill, and S. F. Ye. Electronic structure contributions of non-herne oxo-iron(v) complexes to the reactivity. J. Am. Chem. Soc., 140(30):9531–9544, 2018. URL: <Go to ISI>://WOS:000440877000033, doi:10.1021/jacs.8b04275.

[591]

Marco Montalti, Alberto Credi, Luca Prodi, and M. Teresa Gandolfi. Handbook of Photochemistry, Third Edition. CRC Press, 3 edition edition, 02 2006. ISBN 978-0-8247-2377-4.

[592]

K. Mori, T. P. M. Goumans, E. van Lenthe, and F. Wang. Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin–orbit coupling. Phys. Chem. Chem. Phys., 16(28):14523–14530, 06 2014. URL: http://pubs.rsc.org/en/content/articlelanding/2014/cp/c3cp55438d, doi:10.1039/C3CP55438D.

[593]

A. Moritz, X. Cao, and M. Dolg. Theor. Chem. Acc., 117 & 118:473 & 845, 2007.

[594]

A. Moritz and M. Dolg. Theor. Chem. Acc., 121:297, 2008.

[595]

D. H. Moseley, S. E. Stavretis, K. Thirunavukkuarasu, M. Ozerov, Y. Q. Cheng, L. L. Daemen, J. Ludwig, Z. G. Lu, D. Smirnov, C. M. Brown, A. Pandey, A. J. Ramirez-Cuesta, A. C. Lamb, M. Atanasov, E. Bill, F. Neese, and Z. L. Xue. Spin-phonon couplings in transition metal complexes with slow magnetic relaxation. Nature Comm., 9:11, 2018. URL: <Go to ISI>://WOS:000437101700002, doi:10.1038/s41467-018-04896-0.

[596]

D. Mukherjee. Chem. Phys. Lett., 274:561, 1997.

[597]

R. P. Muller, J. M. Langlois, M. N. Ringnalda, R. A. Friesner, and W. A. Goddard. J. Chem. Phys., 100:1226, 1994.

[598]

R. S. Mulliken. Electronic population analysis on lcao–mo molecular wave functions. i. J. Chem. Phys., 23(10):1833–1840, 1955. URL: https://doi.org/10.1063/1.1740588, doi:10.1063/1.1740588.

[599]

R. S. Mulliken. Report on notation for the spectra of polyatomic molecules. J. Chem. Phys., 23(11):1997–2011, 1955. URL: https://doi.org/10.1063/1.1740655, doi:10.1063/1.1740655.

[600]

C. W. Murray, N. C. Handy, and G. J. Laming. Mol. Phys., 78:997, 1993.

[601]

A. Najibi, M. Casanova-Páez, and L. Goerigk. Analysis of recent BLYP- and PBE-based range-separated double-hybrid density functional approximations for main-group thermochemistry, kinetics, and noncovalent interactions. J. Phys. Chem. A, 125:4026–4035, 2021.

[602]

A. Najibi and L. Goerigk. J. Chem. Theory Comput., 14:5725, 2018.

[603]

A. Najibi and L. Goerigk. J. Comput. Chem., 41:2562–2572, 2020.

[604]

Haruyuki Nakano. Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J. Chem. Phys., 99(10):7983–7992, 11 1993. doi:doi:10.1063/1.465674.

[605]

G. Nave, S. Johansson, R. C. M. Learner, A. P. Thorne, and J. W. Brault. Astrophys. J., Suppl. Ser., 94:221, 1994.

[606]

E. F. Neese, F.; Valeev. Revisiting the atomic natural orbital approach for basis sets: robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods. J. Chem. Theory Comput., 7:33–43, 2011.

[607]

F. Neese. Chem. Phys. Lett., 325:93, 2000.

[608]

F. Neese. Inorg. Chim. Acta, 337C:181–192, 2002.

[609]

F. Neese. Chem. Phys. Lett., 380:721–728, 2003.

[610]

F. Neese. J. Chem. Phys., 122:034107, 2005.

[611]

F. Neese. J. Am. Chem. Soc., 128:10213, 2006.

[612]

F. Neese. J. Biol. Inorg. Chem., 11:702, 2006.

[613]

F. Neese. J. Chem. Phys., 127:164112, 2007.

[614]

F. Neese. Coordin. Chem. Rev., 253:526, 2009.

[615]

F. Neese, M. Atanasov, G. Bistoni, D. Maganas, and S. F. Ye. Chemistry and quantum mechanics in 2019: Give us insight and numbers. J. Am. Chem. Soc., 141(7):2814–2824, 2019. URL: <Go to ISI>://WOS:000459642000006, doi:10.1021/jacs.8b13313.

[616]

F. Neese, A. Hansen, and D. G. Liakos. J. Chem. Phys., 131:064103, 2009.

[617]

F. Neese, A. Hansen, F. Wennmohs, and S. Grimme. Acc. Chem. Res., 42:641, 2009.

[618]

F. Neese, D. G. Liakos, and S. F. Ye. J. Biol. Inorg. Chem., 16:821, 2011.

[619]

F. Neese, T. Schwabe, and S. Grimme. J. Chem. Phys., 126:124115, 2007.

[620]

F. Neese, T. Schwabe, S. Kossmann, B. Schirmer, and S. Grimme. J. Chem. Theory Comput., 5:3060, 2009.

[621]

F. Neese and E. I. Solomon. Inorg. Chem., 37:6568–6582, 1998.

[622]

F. Neese, F. Wennmohs, and A. Hansen. J. Chem. Phys., 130:114108, 2009.

[623]

F. Neese, F. Wennmohs, A. Hansen, and U. Becker. Chem. Phys., 356:98–109, 2009.

[624]

Frank Neese. The orca program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2(1):73–78, 2012. doi:http://doi.wiley.com/10.1002/wcms.81.

[625]

Frank Neese. High-level spectroscopy, quantum chemistry, and catalysis: not just a passing fad. Angew. Chem. Int. Ed., 56(37):11003–11010, 2017.

[627]

Frank Neese. Software update: the orca program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 8(1):e1327, 2018. doi:http://doi.wiley.com/10.1002/wcms.1327.

[628]

Frank Neese, Taras Petrenko, Dmitry Ganyushin, and Gottfried Olbrich. Advanced aspects of ab initio theoretical optical spectroscopy of transition metal complexes: Multiplets, spin-orbit coupling and resonance Raman intensities. Coordin. Chem. Rev., 251(3-4):288–327, 02 2007. doi:10.1016/j.ccr.2006.05.019.

[629]

Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger. The orca quantum chemistry program package. J. Chem. Phys., 152(22):224108, 2020. doi:https://aip.scitation.org/doi/10.1063/5.0004608.

[630]

J. Neugebauer, M. Reiher, C. Kind, and B. A. Hess. J. Comput. Chem., 23:895–910, 2002.

[631]

Johannes Neugebauer, Markus Reiher, Carsten Kind, and Bernd A. Hess. Quantum chemical calculation of vibrational spectra of large molecules—Raman and IR spectra for Buckminsterfullerene. J. Comput. Chem., 23(9):895–910, 07 2002. URL: http://onlinelibrary.wiley.com/doi/10.1002/jcc.10089/abstract, doi:10.1002/jcc.10089.

[632]

A. Nicklass, M. Dolg, H. Stoll, and H. Preuss. J. Chem. Phys., 102:8942–8952, 1995.

[633]

C. Nieke and J. Reinhold. Theor. Chim. Acta, 65:99, 1984.

[634]

Hidetaka Nishimura, Kazuo Tanaka, Yasuhiro Morisaki, Yoshiki Chujo, Atsushi Wakamiya, and Yasujiro Murata. Oxygen-bridged diphenylnaphthylamine as a scaffold for full-color circularly polarized luminescent materials. The Journal of Organic Chemistry, 82(10):5242–5249, 2017. URL: https://www.sciencedirect.com/science/article/pii/S0022326321002929, doi:https://doi.org/10.1021/acs.joc.7b00511.

[635]

J. Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comput., 35(151):773–782, 1980.

[636]

L. Noodleman. J. Chem. Phys., 74:5737, 1981.

[637]

L. Noodleman and E. R. Davidson. Chem. Phys., 109:131, 1986.

[638]

Marcel Nooijen and Rodney J. Bartlett. A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory. The Journal of Chemical Physics, 106(15):6441–6448, 04 1997. URL: https://doi.org/10.1063/1.474000, arXiv:https://pubs.aip.org/aip/jcp/article-pdf/106/15/6441/19166848/6441\_1\_online.pdf, doi:10.1063/1.474000.

[639]

Marcel Nooijen, Ondrej Demel, Dipayan Datta, Liguo Kong, K. R. Shamasundar, V. Lotrich, Lee M. Huntington, and Frank Neese. Communication: Multireference equation of motion coupled cluster: A transform and diagonalize approach to electronic structure. J. Chem. Phys., 140(8):081102, 2014.

[640]

D. A. Pantazis, X.-Y. Chen, C. R. Landis, and F. Neese. J. Chem. Theory Comput., 4:908–919, 2008.

[641]

D. A. Pantazis and F. Neese. J. Chem. Theory Comput., 5:2229–2238, 2009.

[642]

D. A. Pantazis and F. Neese. J. Chem. Theory Comput., 7:677–684, 2011.

[643]

D. A. Pantazis and F. Neese. Theor. Chem. Acc., 131:1292, 2012.

[644]

D. A. Pantazis, M. Orio, T. Petrenko, S. Zein, E. Bill, W. Lubitz, J. Messinger, and F. Neese. Chem. Eur. J., 15:5108, 2009.

[645]

Ewa Papajak and Donald G. Truhlar. Convergent partially augmented basis sets for Post-Hartree-Fock calculations of molecular properties and reaction barrier heights. J. Chem. Theory Comput., 7(1):10–18, 2011. URL: https://doi.org/10.1021/ct1005533, doi:10.1021/ct1005533.

[646]

R. G. Parr. Density Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press, 1994. ISBN 978-0-19-509276-9.

[647]

H. Partridge. J. Chem. Phys., 87:6643, 1987.

[648]

H. Partridge. J. Chem. Phys., 90:1043, 1989.

[649]

J. L. Pascual-Ahuir and E. Silla. J. Comput. Chem., 11:1047–1060, 1990.

[650]

J. L. Pascual-Ahuir, E. Silla, and I. Tunon. J. Comput. Chem., 12:1077–1088, 1991.

[651]

J. L. Pascual-Ahuir, E. Silla, and I. Tunon. J. Comput. Chem., 15:1127–1138, 1994.

[652]

Shubhrodeep Pathak, Lucas Lang, and Frank Neese. A dynamic correlation dressed complete active space method: Theory, implementation, and preliminary applications. J. Chem. Phys., 147:234109, 2017.

[653]

F. Pavošević, P. Pinski, C. Riplinger, F. Neese, and E.F. Valeev. J. Chem. Phys., 144:144109, 2016.

[654]

Fabijan Pavošević, Chong Peng, Peter Pinski, Christoph Riplinger, Frank Neese, and Edward F Valeev. Sparsemaps—a systematic infrastructure for reduced scaling electronic structure methods. v. linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. J. Chem. Phys., 146(17):174108, 2017.

[655]

Kasper S Pedersen, Daniel N Woodruff, Saurabh Kumar Singh, Alain Tressaud, Etienne Durand, Mihail Atanasov, Panagiota Perlepe, Katharina Ollefs, Fabrice Wilhelm, Corine Mathonière, and others. [osf6] x-: molecular models for spin-orbit entangled phenomena. Chem. Eur. J., 23(47):11244–11248, 2017.

[656]

M. R. Pederson and S. N. Khanna. Phys. Rev. B, 60:9566, 1999.

[657]

Andrew J. Pell, Guido Pintacuda, and Clare P. Grey. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc., 2018. doi:10.1016/j.pnmrs.2018.05.001.

[658]

Daoling Peng, Nils Middendorf, Florian Weigend, and Markus Reiher. An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. J. Chem. Phys., 138(18):184105, may 2013. URL: http://dx.doi.org/10.1063/1.4803693] http://aip.scitation.org/doi/10.1063/1.4803693, doi:10.1063/1.4803693.

[659]

Daoling Peng and Markus Reiher. Local relativistic exact decoupling. J. Chem. Phys., 136(24):244108, jun 2012. URL: http://aip.scitation.org/doi/10.1063/1.4729788, doi:10.1063/1.4729788.

[660]

J. P. Perdew. Phys. Rev. B, 33:8822, 1986.

[661]

J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 77:3865, 1996.

[662]

J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 80:891, 1998.

[663]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Phys. Rev. A, 46:6671, 1992.

[664]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Phys. Rev. A, 48:4978, 1993.

[665]

J. P. Perdew, A. Ruzsinsky, G. I. Csonka, L. A. Constantin, and J. Sun. Phys. Rev. Lett., 103:026403, 2009.

[666]

J. P. Perdew, A. Ruzsinsky, G. I. Csonka, L. A. Constantin, and J. Sun. Phys. Rev. Lett., 106:179902, 2011.

[667]

J. P. Perdew and Y. Wang. Phys. Rev. B, 45:13244, 1992.

[668]

J. P. Perdew and Yue Wang. Phys. Rev. B, 33:8800, 1986.

[669]

J. P. Perdew and Wang Yue. Phys. Rev. B, 40:3399, 1986.

[670]

K. A. Peterson. J. Chem. Phys., 119:11099, 2003.

[671]

K. A. Peterson, D. Figgen, M. Dolg, and H. Stoll. J. Chem. Phys., 126:124101, 2007.

[672]

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg. J. Chem. Phys., 119:11113, 2003.

[673]

K. A. Peterson and C. Puzzarini. Theor. Chem. Acc., 114:283, 2005.

[674]

K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll. J. Phys. Chem. A, 110:13877, 2006.

[675]

T. Petrenko, S. Kossmann, and F. Neese. J. Chem. Phys., 134:054116, 2011.

[676]

Taras Petrenko, Serena DeBeer-George, Núria Aliaga-Alcalde, Eckhard Bill, Bernd Mienert, Yuming Xiao, YiSong Guo, Wolfgang Sturhahn, Stephen P. Cramer, Karl Wieghardt, and Frank Neese. Characterization of a genuine iron(v)-nitrido species by nuclear resonant vibrational spectroscopy coupled to density functional calculations. J. Am. Chem. Soc., 129:11053–11060, 2007.

[677]

Taras Petrenko, Simone Kossmann, and Frank Neese. Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization. J. Chem. Phys., 134(5):054116, 02 2011. URL: http://aip.scitation.org/doi/abs/10.1063/1.3533441, doi:10.1063/1.3533441.

[678]

Taras Petrenko and Frank Neese. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys., 127(16):164319, 10 2007. URL: https://doi.org/10.1063/1.2770706, doi:10.1063/1.2770706.

[679]

Taras Petrenko, Wolfgang Sturhahn, and Frank Neese. Hyperfine Interact., 175:165, 2007.

[680]

R. A. Pierotti. Chem. Rev., 76:717, 1976.

[681]

W. J. Pietro, E. S. Blurock, R. F. Hout, Hehrem W. J., D. J. DeFrees, and R. F. Stewart. Inorg. Chem., 20:3650, 1981.

[682]

W. J. Pietro and W. J. Hehre. J. Comput. Chem., 4:241, 1983.

[683]

W. J. Pietro, B. A. Levi, W. J. Hehre, and R. F. Stewart. Inorg. Chem., 19:2225, 1980.

[684]

P. Pinski, C. Riplinger, E. F. Valeev, and Frank Neese. J. Chem. Phys., 143:034108, 2015.

[685]

Peter Pinski and Frank Neese. Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys., 148:031101, 2018. doi:10.1063/1.5011204.

[686]

Peter Pinski and Frank Neese. Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). J. Chem. Phys., 150:164102, 2019.

[687]

F. Plasser, M. Wormit, and A. Dreuw. J. Chem. Phys., 141:024106, 2014.

[688]

Christoph Plett, Marcel Stahn, Markus Bursch, Jan-Michael Mewes, and Stefan Grimme. Improving quantum chemical solvation models by dynamic radii adjustment for continuum solvation method (DRACO). J. Phys. Chem. Lett., 15:2462, 2024.

[689]

Patrik Pollak and Florian Weigend. Segmented contracted error-consistent basis sets of double- and triple-ζ valence quality for one- and two-component relativistic all-electron calculations. J. Chem. Theory Comput., 13(8):3696–3705, 2017. URL: https://doi.org/10.1021/acs.jctc.7b00593, doi:10.1021/acs.jctc.7b00593.

[690]

Christopher J. Pollock, Mario Ulises Delgado-Jaime, Mihail Atanasov, Frank Neese, and Serena DeBeer. Kβ mainline x-ray emission spectroscopy as an experimental probe of Metal–Ligand covalency. J. Am. Chem. Soc., 136(26):9453–9463, 2014. URL: https://pubmed.ncbi.nlm.nih.gov/24914450/, doi:https://doi.org/10.1021/ja504182n.

[691]

J. A. Pople and D. L. Beveridge. Approximate Molecular Orbital Theory. McGraw Hill Inc, 1970.

[692]

J. A. Pople, D. L. Beveridge, and P. A. Dobosh. J. Chem. Phys., 47:2026, 1967.

[693]

J. A. Pople, J. S. Binkley, and R. Seeger. Int. J. Quant. Chem. Symp., 10:1, 1976.

[694]

J. A. Pople, P. M. W. Gill, and B. G. Johnson. Chem. Phys. Lett., 199:557, 1992.

[695]

J. A. Pople and G. A. Segal. J. Chem. Phys., 43:136, 1965.

[696]

J. A. Pople and G. A. Segal. J. Chem. Phys., 44:3289, 1966.

[697]

Philipp Pracht, Fabian Bohle, and Stefan Grimme. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Physical Chemistry Chemical Physics, 22(14):7169–7192, April 2020. Publisher: The Royal Society of Chemistry. URL: https://pubs.rsc.org/en/content/articlelanding/2020/cp/c9cp06869d (visited on 2022-04-22), doi:10.1039/C9CP06869D.

[698]

Philipp Pracht, Eike Caldeweyher, Sebastian Ehlert, and Stefan Grimme. A robust non-self-consistent tight-binding quantum chemistry method for large molecules. ChemRxiv, pages DOI: 10.26434/chemrxiv.8326202.v1, 2019.

[699]

Philipp Pracht and Stefan Grimme. Calculation of absolute molecular entropies and heat capacities made simple. Chemical Science, 12(19):6551–6568, May 2021. Publisher: The Royal Society of Chemistry. URL: https://pubs.rsc.org/en/content/articlelanding/2021/sc/d1sc00621e (visited on 2022-08-16), doi:10.1039/D1SC00621E.

[700]

Philipp Pracht, Rainer Wilcken, Anikó Udvarhelyi, Stephane Rodde, and Stefan Grimme. High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge. J. Comput.-Aided Mol. Des., 08 2018. doi:10.1007/s10822-018-0145-7.

[701]

P. Pulay. ImprovedSCF convergence acceleration. J. Comput. Chem., 3(4):556–560, 0024. URL: http://doi.wiley.com/10.1002/jcc.540030413 (visited on 2021-02-24), doi:10.1002/jcc.540030413.

[702]

P. Pulay. Chem. Phys. Lett., 73:393, 1980.

[703]

P. Pulay. J. Comput. Chem., 3:556, 1982.

[704]

P. Pulay, S. Saebo, and W. Meyer. J. Chem. Phys., 81:1901, 1984.

[705]

C. C. Pye and T. Ziegler. Theor. Chem. Acc., 101:396, 1999.

[706]

José M Pérez-Jordá and Weitao Yang. A concise redefinition of the solid spherical harmonics and its use in fast multipole methods. The Journal of chemical physics, 104(20):8003–8006, 1996.

[707]

M. Römelt, S. Ye, and F. Neese. Inorg. Chem., 48:784, 2009.

[708]

E. Ramos-Cordoba, E. Matito, I. Mayer, and P. Salvador. J. Chem. Theory Comput., 8:1270, 2012.

[709]

Dmitrij Rappoport. Property-optimized Gaussian basis sets for lanthanides. J. Chem. Phys., 155:124102, 2021. URL: https://doi.org/10.1063/5.0065611, doi:10.1063/5.0065611.

[710]

Dmitrij Rappoport and Filipp Furche. J. Chem. Phys., 133:134105, 2010.

[711]

V. Rassolov, J. A. Pople, M. Ratner, and T. L. Windus. J. Chem. Phys., accepted 1998.

[712]

K. Ray, S. DeBeer-George, E. I. Solomon, K. Wieghardt, and F. Neese. Chem. Eur. J., 13:2783, 2007.

[713]

Sarah Reimann, Ulf Ekström, Stella Stopkowicz, Andrew M Teale, Alex Borgoo, and Trygve Helgaker. The importance of current contributions to shielding constants in density-functional theory. Phys. Chem. Chem. Phys., 17(28):18834–18842, 2015. URL: http://pubs.rsc.org/en/content/articlehtml/2015/cp/c5cp02682b, arXiv:26123927, doi:10.1039/C5CP02682B.

[714]

Jeffrey R. Reimers. A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J. Chem. Phys., 115(20):9103–9109, 11 2001. URL: http://aip.scitation.org/doi/abs/10.1063/1.1412875, doi:10.1063/1.1412875.

[715]

Kevin Reiter, Michael Kühn, and Florian Weigend. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements. The Journal of Chemical Physics, 146(5):054102, feb 2017. URL: http://aip.scitation.org/doi/10.1063/1.4974897, doi:10.1063/1.4974897.

[716]

Marius Retegan, Nicholas Cox, Dimitrios A. Pantazis, and Frank Neese. A First-Principles Approach to the Calculation of the on-Site Zero-Field Splitting in Polynuclear Transition Metal Complexes. Inorg. Chem., 53(21):11785–11793, 11 2014. doi:10.1021/ic502081c.

[717]

Young Min Rhee and Martin Head-Gordon. J. Phys. Chem. A, 111:5314–5326, 2007.

[718]

J. Ribas-Arino and D. Marx. Chem. Rev., 112(10):5412–5487, 2012.

[719]

J. Ridley and M. C. Zerner. Theor. Chim. Acta, 32:111, 1973.

[720]

C. Riplinger and F. Neese. J. Chem. Phys., 138:034106, 2013.

[721]

C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and Frank Neese. J. Chem. Phys., 144:024109, 2016.

[722]

C. Riplinger, B. Sandhoefer, A. Hansen, and F. Neese. J. Chem. Phys., 139:134101, 2013.

[723]

Christoph Riplinger, Joseph P. Y. Kao, Gerald M. Rosen, Velavan Kathirvelu, Gareth R. Eaton, Sandra S. Eaton, Andrei Kutateladze, and Frank Neese. J. Am. Chem. Soc., 131:10092, 2009.

[724]

T. Risthaus, A. Hansen, and S. Grimme. Phys. Chem. Chem. Phys., 16:14408–14419, 2014.

[725]

Melvin B. Robin. Higher Excited States of Polyatomic Molecules. Academic Press, 1974. ISBN 978-0-12-589901-7.

[726]

M. Roemelt and F. Neese. J. Phys. Chem. A, 117:3069–3082, 2013.

[727]

J. D. Rolfes, M. van Gastel, and F. Neese. Where is the fluoro wall?: A quantum chemical investigation. Inorg. Chem., 59(2):1556–1565, 2020. URL: <Go to ISI>://WOS:000509420100065, doi:10.1021/acs.inorgchem.9b03474.

[728]

Julian D. Rolfes, Frank Neese, and Dimitrios A. Pantazis. All-electron scalar relativistic basis sets for the elements Rb–Xe. J. Comput. Chem., 41:1842–1849, 2020. doi:10.1002/jcc.26355.

[729]

M Rolik, Z.; Kallay. A general-order local coupled-cluster method based on the cluster-in-molecule approach. J. Chem. Phys., 135:104111, 2011. doi:https://doi.org/10.1063/1.3632085.

[730]

C. Romelt, S. F. Ye, E. Bill, T. Weyhermuller, M. van Gastel, and F. Neese. Electronic structure and spin multiplicity of iron tetraphenylporphyrins in their reduced states as determined by a combination of resonance raman spectroscopy and quantum chemistry. Inorg. Chem., 57(4):2141–2148, 2018. URL: <Go to ISI>://WOS:000426014800048, doi:10.1021/acs.inorgchem.7b03018.

[731]

Björn O. Roos and Kerstin Andersson. Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited. Chem. Phys. Lett., 245:215–223, 10 1995. doi:https://doi.org/10.1016/0009-2614(95)01010-7.

[732]

L. E. Roy, J. Hay, and R. L. Martin. J. Chem. Theory Comput., 4:1029, 2008.

[733]

E. Ruiz, J. Cano, S. Alvarez, and P. Alemany. J. Comput. Chem., 20:1391, 1999.

[734]

Paweł Sał ek, Stinne Hø st, Lea Thø gersen, Poul Jø rgensen, Pekka Manninen, Jeppe Olsen, Branislav Jansík, Simen Reine, Filip Pawł owski, Erik Tellgren, Trygve Helgaker, and Sonia Coriani. Linear-scaling implementation of molecular electronic self-consistent field theory. J. Chem. Phys., 126(11):114110, 2007.

[735]

Ali Sadeghi, S. Alireza Ghasemi, Bastian Schaefer, Stephan Mohr, Markus A. Lill, and Stefan Goedecker. Metrics for measuring distances in configuration spaces. The Journal of Chemical Physics, 139(18):184118, November 2013. Publisher: American Institute of Physics. URL: https://aip.scitation.org/doi/abs/10.1063/1.4828704 (visited on 2022-04-25), doi:10.1063/1.4828704.

[736]

S. Saebo and J. Almlöf. Chem. Phys. Lett., 154:83, 1989.

[737]

T. Saito, S. Nishihara, Y. Kataoka, Y. Nakanishi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, and K. Yamaguchi. J. Phys. Chem. A, 114:7967, 2010.

[738]

T. Saito and W. Thiel. J. Phys. Chem. A, 116:10864, 2012.

[739]

M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, and F. Neese. J. Chem. Phys., 146:164105, 2017.

[740]

M. Saitow, A. K. Dutta, and F. Neese. Accurate ionization potentials, electron affinities and electronegativities of single-walled carbon nanotubes by state-of-the-art local coupled-cluster theory. Bull. Chem. Soc. Jpn., 92(1):170–174, 2019. URL: <Go to ISI>://WOS:000455409900003, doi:10.1246/bcsj.20180254.

[741]

Masaaki Saitow, Yuki Kurashige, and Takeshi Yanai. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. J. Chem. Phys., 139:044118, 07 2013. doi:10.1063/1.4816627.

[742]

Masaaki Saitow and Frank Neese. Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 149:034104, 2018. doi:10.1063/1.5027114.

[743]

C. A. M. Salla, J. T. dos Santos, G. Farias, A. J. Bortoluzi, S. F. Curcio, T. Cazati, R. Izsak, F. Neese, B. de Souza, and I. H. Bechtold. New Boron(III) blue emitters for all-solution processed OLEDs: Molecular design assisted by theoretical modeling. Eur. J. Inorg. Chem., pages 2247–2257, 2019. URL: <Go to ISI>://WOS:000471302400001, doi:10.1002/ejic.201900265.

[744]

E. A. Salter, G. W. Trucks, and R. J. Bartlett. J. Chem. Phys., 90:1752, 1989.

[745]

B. Sandhoefer and F. Neese. J. Chem. Phys., 137:094102, 2012.

[746]

Gerald M. Sando and Kenneth G. Spears. Ab Initio Computation of the Duschinsky Mixing of Vibrations and Nonlinear Effects. J. Phys. Chem. A, 105(22):5326–5333, 06 2001. URL: http://dx.doi.org/10.1021/jp004230b, doi:10.1021/jp004230b.

[747]

Fabrizio Santoro, Roberto Improta, Alessandro Lami, Julien Bloino, and Vincenzo Barone. Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution. The Journal of Chemical Physics, 126(8):084509, 02 2007. URL: https://doi.org/10.1063/1.2437197, arXiv:https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2437197/15395332/084509\_1\_online.pdf, doi:10.1063/1.2437197.

[748]

D. P. Santry. J. Am. Chem. Soc., 90:3309, 1968.

[749]

D. P. Santry and G. A. Segal. J. Chem. Phys., 47:158, 1967.

[750]

V. R. Saunders and I. H. Hillier. Int. J. Quant. Chem., VII:699, 1973.

[751]

Elvira R. Sayfutyarova and Sharon Hammes-Schiffer. Constructing molecular π-orbital active spaces for multireference calculations of conjugated systems. J. Chem. Theory Comput., 15(3):1679–1689, March 2019. URL: https://doi.org/10.1021/acs.jctc.8b01196, doi:10.1021/acs.jctc.8b01196.

[752]

Elvira R. Sayfutyarova, Qiming Sun, Garnet Kin-Lic Chan, and Gerald Knizia. Automated construction of molecular active spaces from atomic valence orbitals. J. Chem. Theory Comput., 13(9):4063–4078, September 2017. URL: https://doi.org/10.1021/acs.jctc.7b00128, doi:10.1021/acs.jctc.7b00128.

[753]

A. Schäfer, H. Horn, and R. J. Ahlrichs. Chem. Phys., 97:2571, 1992.

[754]

M. Schütz and H. J. Werner. Chem. Phys. Lett., 318:370, 2000.

[755]

M. Schütz and H. J. Werner. J. Chem. Phys., 114:661, 2001.

[756]

Igor Schapiro, Kantharuban Sivalingam, and Frank Neese. Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies. J. Chem. Theory Comput., 9(8):3567–3580, 08 2013. doi:10.1021/ct400136y.

[757]

Caspar Jonas Schattenberg and Martin Kaupp. Effect of the current dependence of tau-dependent exchange-correlation functionals on nuclear shielding calculations. J. Chem. Theory Comput., 17(3):1469–1479, 2021. URL: https://dx.doi.org/10.1021/acs.jctc.0c01223, doi:10.1021/acs.jctc.0c01223.

[758]

F. Schautz, H.-J. Flad, and M. Dolg. Theor. Chem. Acc., 99:231, 1998.

[759]

B. Scheibe, C. Pietzonka, O. Mustonen, M. Karppinen, A. J. Karttunen, M. Atanasov, F. Neese, M. Conrad, and F. Kraus. The U2F12 (2-) anion of sr U2F12. Angew. Chem. Int. Ed., 57(11):2914–2918, 2018. URL: <Go to ISI>://WOS:000426490700027, doi:10.1002/anie.201800743.

[760]

P. Scheurer and W. H. E. Schwarz. Continuous degeneracy of sets of localized orbitals. Int. J. Quantum Chem., 76:428–433, 2000.

[761]

B. Schimmelpfennig. AMFI - an atomic mean-field spin-orbit integral program. 1996.

[762]

H. B. Schlegel. In K. P. Lawley, editor, Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry, Part I, volume 67, pages 249. John Wiley and Sons, 1987.

[763]

H. B. Schlegel. In D. R. Yarkony, editor, Modern Electronic Structure Theory, pages 459. World Scientific, 1995.

[764]

H. B. Schlegel. In P. v. R. Schleyer, editor, Encyclopedia of Computational Chemistry, pages 1136. John Wiley and Sons, 1998.

[765]

Y. L. A. Schmerwitz, V. Ásgeirsson, and H. Jónsson. Improved initialization of optimal path calculations using sequential traversal over the image dependent pair potential surface. arXiv:2310.04531, 2023. URL: https://arxiv.org/abs/2310.04531.

[766]

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery. J. Comput. Chem., 14:1347, 1993.

[767]

W. Schneider, G. Bistoni, M. Sparta., C. Riplinger, M. Saitow, A. Auer, and F. Neese. Decomposition of intermolecular interaction energies within the local pair natural orbital coupled cluster framework. J. Chem. Theory Comput., 12(10):4778–4792, 2016. doi:10.1021/acs.jctc.6b00523.

[768]

C. E. Schulz, R. G. Castillo, D. A. Pantazis, S. DeBeer, and F. Neese. Structure-spectroscopy correlations for intermediate q of soluble methane monooxygenase: Insights from QM/MM calculations. J. Am. Chem. Soc., 143(17):6560–6577, 2021. URL: <Go to ISI>://WOS:000648704100032, doi:10.1021/jacs.1c01180.

[769]

C. E. Schulz, M. van Gastel, D. A. Pantazis, and F. Neese. Converged structural and spectroscopic properties for refined qm/mm models of azurin. Inorg. Chem., 60(10):7399–7412, 2021. URL: <Go to ISI>://WOS:000653539100063, doi:10.1021/acs.inorgchem.1c00640.

[770]

C. J. H. Schutte, J. E. Bertie, P. R. Bunker, J. T. Hougen, I. M. Mills, J. K. G. Watson, and B. P. Winnewisser. Notations and conventions in molecular spectroscopy: part 2. symmetry notation (iupac recommendations 1997). Pure & Appl. Chem., 69(8):1641–1649, 1997. URL: https://doi.org/10.1351/pac199769081641, doi:10.1351/pac199769081641.

[771]

T. Schwabe and L. Goerigk. J. Chem. Theory Comput., 13:4307, 2017.

[772]

T. Schwabe and S. Grimme. Phys. Chem. Chem. Phys., 8:4398, 2006.

[773]

P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, and P. D. W. Boyd. J. Chem. Phys., 91:1762–1774, 1989.

[774]

Martin Schütz. A new, fast, semi-direct implementation of linear scaling local coupled cluster theory. Physical Chemistry Chemical Physics, 4(16):3941–3947, 2002.

[775]

Martin Schütz and Frederick R Manby. Linear scaling local coupled cluster theory with density fitting. part i: 4-external integrals. Physical Chemistry Chemical Physics, 5(16):3349–3358, 2003.

[776]

G. E. Scuseria and H. F. Schaefer III. Chem. Phys. Lett., 142:354, 1987.

[777]

G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III. J. Chem. Phys., 89:7382, 1988.

[778]

J. Sedlej and I. L. Cooper. Semi-Emipirical Methods of Quantum Chemistry. 1985, John Wiley and Sons.

[779]

R. Seeger and J. A. Pople. J. Chem. Phys., 66:3045, 1977.

[780]

Emmanouil Semidalas and Jan M. L. Martin. Automatic generation of complementary auxiliary basis sets for explicitly correlated methods. Journal of Computational Chemistry, 43(25):1690–1700, 2022. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26970, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.26970, doi:https://doi.org/10.1002/jcc.26970.

[781]

Avijit Sen, Bernardo de Souza, Lee M. J. Huntington, Martin Krupička, Frank Neese, and Róbert Izsák. An efficient pair natural orbital based configuration interaction scheme for the calculation of open-shell ionization potentials. J. Chem. Phys., 149(11):114108, 2018.

[782]

Robert Send and Filipp Furche. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance. J. Chem. Phys., 132(4):044107, 01 2010. URL: https://aip.scitation.org/doi/10.1063/1.3292571 (visited on 2020-06-08), doi:10.1063/1.3292571.

[783]

Carlos Serpa, Luis G. Arnaut, Sebastião J. Formosinho, and K. Razi Naqvi. Calculation of triplet–triplet energy transfer rates from emission and absorption spectra. The quenching of hemicarcerated triplet biacetyl by aromatic hydrocarbons. Photochem. Photobiol. Sci., 2(5):616–623, 05 2003. doi:10.1039/B300049D.

[784]

Rami Shafei, Ai Hamano, Christophe Gourlaouen, Dimitrios Maganas, Keiko Takano, Chantal Daniel, and Frank Neese. Theoretical spectroscopy for unraveling the intensity mechanism of the optical and photoluminescent spectra of chiral re(i) transition metal complexes. The Journal of Chemical Physics, 159(8):084102, 2023. URL: https://doi.org/10.1063/5.0153742.

[785]

Sason Shaik, Rajeev Ramanan, David Danovich, and Debasish Mandal. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev., 47:5125–5145, 2018. URL: http://dx.doi.org/10.1039/C8CS00354H, doi:10.1039/C8CS00354H.

[786]

Tareq M. Shami, Ayman A. El-Saleh, Mohammed Alswaitti, Qasem Al-Tashi, Mhd Amen Summakieh, and Seyedali Mirjalili. Particle Swarm Optimization: A Comprehensive Survey. IEEE Access, 10:10031–10061, 2022. URL: https://ieeexplore.ieee.org/document/9680690 (visited on 2024-06-25), doi:10.1109/ACCESS.2022.3142859.

[787]

Honghui Shang and Jinlong Yang. The Moving-Grid Effect in the Harmonic Vibrational Frequency Calculations with Numeric Atom-Centered Orbitals. The Journal of Physical Chemistry A, 124(14):2897–2906, April 2020. Publisher: American Chemical Society. URL: https://doi.org/10.1021/acs.jpca.0c01453 (visited on 2023-07-13), doi:10.1021/acs.jpca.0c01453.

[788]

S. Sharma and G. K.-L. Chan. J. Chem. Phys., 136:124121, 2012.

[789]

I. Shavir and L. T. Redmon. J. Chem. Phys., 73:5711, 1980.

[790]

James Shee, Matthias Loipersberger, Adam Rettig, Joonho Lee, and Martin Head-Gordon. Regularized second-order møller–plesset theory: a more accurate alternative to conventional MP2 for noncovalent interactions and transition metal thermochemistry for the same computational cost. The Journal of Physical Chemistry Letters, 12(50):12084–12097, December 2021. URL: https://doi.org/10.1021/acs.jpclett.1c03468, doi:10.1021/acs.jpclett.1c03468.

[791]

D. Sheppard, R. Terrell, and G. Henkelman. Optimization methods for finding minimum energy paths. J. Chem. Phys., 128(13):134106, 2008.

[792]

Toru Shiozaki, Werner Győrffy, Paolo Celani, and Hans-Joachim Werner. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys., 135:081106–081106–4, 08 2011.

[793]

R. G. Shirazi, F. Neese, and D. A. Pantazis. Accurate spin-state energetics for aryl carbenes. J. Chem. Theory Comput., 14(9):4733–4746, 2018. URL: <Go to ISI>://WOS:000444792700020, doi:10.1021/acs.jctc.8b00587.

[794]

R. G. Shirazi, F. Neese, D. A. Pantazis, and G. Bistoni. Physical nature of differential spin-state stabilization of carbenes by hydrogen and halogen bonding: A domain-based pair natural orbital coupled cluster study. J. Phys. Chem. A, 123(24):5081–5090, 2019. URL: <Go to ISI>://WOS:000472800600009, doi:10.1021/acs.jpca.9b01051.

[795]

R. G. Shirazi, D. A. Pantazis, and F. Neese. Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet-triplet state splittings of aryl-carbenes. Mol. Phys., 2020. URL: <Go to ISI>://WOS:000535113400001, doi:10.1080/00268976.2020.1764644.

[796]

Per E. M. Siegbahn. Direct configuration interaction with a reference state composed of many reference configurations. Int. J. Quant. Chem., 18(5):1229–1242, 11 1980. doi:10.1002/qua.560180510.

[797]

Saurabh Kumar Singh, Mihail Atanasov, and Frank Neese. Challenges in multireference perturbation theory for the calculations of the g-tensor of first-row transition-metal complexes. J. Chem. Theory Comput., 14(9):4662–4677, 2018.

[798]

Saurabh Kumar Singh, Julien Eng, Mihail Atanasov, and Frank Neese. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coordin. Chem. Rev., 344:2–25, 08 2017. doi:10.1016/j.ccr.2017.03.018.

[799]

S. Sinnecker and F. Neese. J. Phys. Chem. A, 110:12267, 2006.

[800]

A. Sirohiwal, F. Neese, and D. A. Pantazis. Microsolvation of the redox-active tyrosine-d in photosystem II: Correlation of energetics with EPR spectroscopy and oxidation-induced proton transfer. J. Am. Chem. Soc., 141(7):3217–3231, 2019. URL: <Go to ISI>://WOS:000459642000056, doi:10.1021/jacs.8b13123.

[801]

A. Sirohiwal, F. Neese, and D. A. Pantazis. Protein matrix control of reaction center excitation in photosystem II. J. Am. Chem. Soc., 142(42):18174–18190, 2020. URL: <Go to ISI>://WOS:000580559000041, doi:10.1021/jacs.0c08526.

[802]

A. Sirohiwal, F. Neese, and D. A. Pantazis. Chlorophyll excitation energies and structural stability of the cp47 antenna of photosystem ii: a case study in the first-principles simulation of light-harvesting complexes. Chem. Sci., 12(12):4463–4476, 2021. URL: <Go to ISI>://WOS:000635768300025, doi:10.1039/d0sc06616h.

[803]

A. Sirohiwal, F. Neese, and D. A. Pantazis. How can we predict accurate electrochromic shifts for biochromophores? a case study on the photosynthetic reaction center. J. Chem. Theory Comput., 17(3):1858–1873, 2021. URL: <Go to ISI>://WOS:000629135700044, doi:10.1021/acs.jctc.0c01152.

[804]

Abhishek Sirohiwal, Romain Berraud-Pache, Frank Neese, Róbert Izsák, and Dimitrios A. Pantazis. Accurate computation of the absorption spectrum of chlorophyll a with pair natural orbital coupled cluster methods. J. Phys. Chem. B, 124(40):8761–8771, 2020. URL: https://doi.org/10.1021/acs.jpcb.0c05761, doi:10.1021/acs.jpcb.0c05761.

[805]

Kantharuban Sivalingam, Martin Krupička, Alexander A. Auer, and Frank Neese. Comparison of fully internally and strongly contracted multireference configuration interaction procedures. J. Chem. Phys., 145(5):054104, 08 2016. doi:10.1063/1.4959029.

[806]

J. C. Slater. The Quantum Theory of Atoms Molecules and Solids, Vol. 4. McGraw Hill, New York, 1974.

[807]

S. Smidstrup, A. Pedersen, K Stokbro, and H. and Jónsson. Improved initial guess for minimum energy path calculations. J. Chem. Phys., 140(21):214106, 2014.

[808]

T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, and K. Yamaguchi. Chem. Phys. Lett., 319:223, 2000.

[809]

Alessandro Soncini and Willem Van den Heuvel. Communication: Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting. J. Chem. Phys., 138:021103, 2013. doi:doi:10.1063/1.4775809.

[810]

L. K. Sorensen, M. Guo, R. Lindh, and M. Lundberg. J. Chem. Theory Comput., 115:174, 2016.

[811]

Manuel Sparta, Marius Retegan, Peter Pinski, Christoph Riplinger, Ute Becker, and Frank Neese. Multilevel approaches within the local pair natural orbital framework. J. Chem. Theory Comput., 13(7):3198–3207, 07 2017. URL: https://pubs.acs.org/doi/10.1021/acs.jctc.7b00260, arXiv:28590754, doi:10.1021/acs.jctc.7b00260.

[812]

Sebastian Spicher, Christoph Plett, Philipp Pracht, Andreas Hansen, and Stefan Grimme. Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods. Journal of Chemical Theory and Computation, 18(5):3174–3189, May 2022. Publisher: American Chemical Society. URL: https://doi.org/10.1021/acs.jctc.2c00239, doi:10.1021/acs.jctc.2c00239.

[813]

N. Spiller, V. G. Chilkuri, S. DeBeer, and F. Neese. Sulfur vs. Selenium as bridging ligand in di-iron complexes: A theoretical analysis. Eur. J. Inorg. Chem., 2020(15-16):1525–1538, 2020. URL: <Go to ISI>://WOS:000520715700001, doi:10.1002/ejic.202000033.

[814]

M. Stahn, S. Ehlert, and S. Grimme. Extended conductor-like polarizable continuum solvation model (cpcm-x) for semiempirical methods. J. Phys. Chem. A, 127:7036–7043, 2023. doi:https://doi.org/10.1021/acs.jpca.3c04382.

[815]

V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew. J. Chem. Phys., 119:12129, 2003.

[816]

S. E. Stavretis, Y. Q. Cheng, L. L. Daemen, C. M. Brown, D. H. Moseley, E. Bill, M. Atanasov, A. J. Ramirez-Cuesta, F. Neese, and Z. L. Xue. Probing magnetic excitations in co-ii single-molecule magnets by inelastic neutron scattering. Eur. J. Inorg. Chem., pages 1119–1127, 2019. URL: <Go to ISI>://WOS:000459919200008, doi:10.1002/ejic.201801088.

[817]

K. K. Stavrev and M. C. Zerner. Spin-averaged hartree–fock procedure for spectroscopic calculations: the absorption spectrum of mn2+ in zns crystals. Int. J. Quant. Chem., 65(5):877–884, 1997. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-461X%281997%2965%3A5%3C877%3A%3AAID-QUA51%3E3.0.CO%3B2-T, doi:https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<877::AID-QUA51>3.0.CO;2-T.

[818]

Peter J. Steinbach and Bernard R. Brooks. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem., 15(7):667–683, 1994. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540150702, doi:10.1002/jcc.540150702.

[819]

Johannes Steinmetzer, Stephan Kupfer, and Stefanie Gräfe. Pysisyphus: Exploring potential energy surfaces in ground and excited states. International Journal of Quantum Chemistry, 121(3):e26390, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26390, doi:10.1002/qua.26390.

[820]

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 98:11623, 1994. URL: https://pubs.acs.org/doi/pdf/10.1021/j100096a001, doi:https://doi.org/10.1021/j100096a001.

[821]

J. P. Stewart. J. Comput. Chem., 10:209 & 221, 1989.

[822]

R. F. Stewart. J. Chem. Phys., 50:2485, 1969.

[823]

H. Stoll, B. Metz, and M. Dolg. J. Comput. Chem., 23:767, 2002.

[824]

H. Stoll, P. Schwerdtfeger P. Fuentealba, J. Flad, L. von Szentpaly, and H. Preuss. J. Chem. Phys., 81:2732–2736, 1984.

[825]

Georgi L Stoychev, Alexander A Auer, Róbert Izsák, and Frank Neese. Self-consistent field calculation of nuclear magnetic resonance chemical shielding constants using gauge-including atomic orbitals and approximate two-electron integrals. J. Chem. Theory Comput., 14(2):619–637, 2018. URL: http://pubs.acs.org/doi/10.1021/acs.jctc.7b01006, doi:10.1021/acs.jctc.7b01006.

[826]

Georgi L. Stoychev, Alexander A. Auer, Jürgen Gauss, and Frank Neese. DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J. Chem. Phys., 154(16):164110, 2021. URL: https://aip.scitation.org/doi/10.1063/5.0047125, doi:10.1063/5.0047125.

[827]

Georgi L. Stoychev, Alexander A. Auer, and Frank Neese. Automatic generation of auxiliary basis sets. J. Chem. Theory Comput., 13(2):554, 2017. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b01041, doi:https://doi.org/10.1021/acs.jctc.6b01041.

[828]

Georgi L. Stoychev, Alexander A. Auer, and Frank Neese. Efficient and accurate prediction of nuclear magnetic resonance shielding tensors with double-hybrid density functional theory. J. Chem. Theory Comput., 14(9):4756–4771, 09 2018. URL: http://pubs.acs.org/doi/10.1021/acs.jctc.8b00624, doi:10.1021/acs.jctc.8b00624.

[829]

R. E. Stratmann, G. E. Scuseria, and M. J. Frisch. Chem. Phys. Lett., 257:213, 1996.

[830]

S. J. Strickler and Robert A. Berg. Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys., 37(4):814–822, 08 1962. URL: http://aip.scitation.org/doi/abs/10.1063/1.1733166 (visited on 2017-12-26), doi:10.1063/1.1733166.

[831]

A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, 1971.

[832]

Jianwei Sun, Adrienn Ruzsinszky, and John P. Perdew. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett., 115(3):036402, 07 2015. doi:10.1103/PhysRevLett.115.036402.

[833]

R. Sure and S. Grimme. J. Comput. Chem., 34:1672–1685, 2013.

[834]

E. A. Suturina, D. Maganas, E. Bill, M. Atanasov, and F. Neese. Inorg. Chem., 54:9948–9961, 2015.

[835]

Elizaveta A Suturina, Joscha Nehrkorn, Joseph M Zadrozny, Junjie Liu, Mihail Atanasov, Thomas Weyhermüller, Dimitrios Maganas, Stephen Hill, Alexander Schnegg, Eckhard Bill, and others. Magneto-structural correlations in pseudotetrahedral forms of the [co (sph) 4] 2–complex probed by magnetometry, mcd spectroscopy, advanced epr techniques, and ab initio electronic structure calculations. Inorg. Chem., 56(5):3102–3118, 2017.

[836]

Elizaveta A. Suturina, Dimitrios Maganas, Eckhard Bill, Mihail Atanasov, and Frank Neese. Magneto-Structural Correlations in a Series of Pseudotetrahedral [CoII(XR)4]2– Single Molecule Magnets: An ab Initio Ligand Field Study. Inorg. Chem., 54(20):9948–9961, 10 2015. doi:10.1021/acs.inorgchem.5b01706.

[837]

Marcel Swart and F. Matthias Bickelhaupt. Optimization of strong and weak coordinates. Int. J. Quantum Chem., 106(12):2536–2544, 01 2006. doi:10.1002/qua.21049.

[838]

William C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. J. Chem. Phys., 76:637–649, 1982.

[839]

A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 1989. ISBN 978-0-486-69186-2. URL: http://books.google.de/books?id=6mV9gYzEkgIC.

[840]

P. G. Szalay and R. J. Bartlett. Chem. Phys. Lett., 214:481, 1993.

[841]

K. Takatsuka, T. Fueno, and K. Yamaguchi. Theor. Chim. Acta, 48:175, 1978.

[842]

Matthias Tamm, Luong Phong Ho, Alexandre Nasr, Peter G Jones, Ahmet Altun, Frank Neese, and Giovanni Bistoni. London dispersion interactions in pnictogen cations [ECl$_2$]$^+$ and [E=E]$^2+$(E= p, as, sb) supported by anionic n-heterocyclic carbenes. Chem. Eur. J., 2018. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201804714.

[843]

Alex Tarnopolsky, Amir Karton, Rotem Sertchook, Dana Vuzman, and Jan M L Martin. Double-hybrid functionals for thermochemical kinetics. J. Phys. Chem. A, 112(1):3–8, 2008. URL: https://pubs.acs.org/doi/abs/10.1021/jp710179r, doi:https://doi.org/10.1021/jp710179r.

[844]

M. Tarrago, C. Romelt, J. Nehrkorn, A. Schnegg, F. Neese, E. Bill, and S. F. Ye. Experimental and theoretical evidence for an unusual almost triply degenerate electronic ground state of ferrous tetraphenylporphyrin. Inorg. Chem., 60(7):4966–4985, 2021. URL: <Go to ISI>://WOS:000637850300081, doi:10.1021/acs.inorgchem.1c00031.

[845]

Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao. J. Chem. Phys., 120:8425–8433, 2004.

[846]

G. Te Velde and E. J. Baerends. J. Comp. Phys., 99:84, 1992.

[847]

W. Thiel and A. A. Voityuk. Theor. Chim. Acta, 81:391, 1992.

[848]

M. K. Thomsen, A. Nyvang, J. P. S. Walsh, P. C. Bunting, J. R. Long, F. Neese, M. Atanasov, A. Genoni, and J. Oyergaard. Insights into single-molecule-magnet behavior from the experimental electron density of linear two-coordinate iron complexes. Inorg. Chem., 58(5):3211–3218, 2019. URL: <Go to ISI>://WOS:000460600300035, doi:10.1021/acs.inorgchem.8b03301.

[849]

Van Anh Tran and Frank Neese. Double-hybrid density functional theory for g-tensor calculations using gauge including atomic orbitals. J. Chem. Phys., 153(5):054105, 08 2020. URL: https://doi.org/10.1063/5.0013799, doi:10.1063/5.0013799.

[850]

O. Treutler and R. J. Ahlrichs. J. Chem. Phys., 102:346, 1994.

[851]

G. N. R. Tripathi and Robert H. Schuler. The resonance Raman spectrum of phenoxyl radical. J. Chem. Phys., 81(1):113–121, 07 1984. URL: http://aip.scitation.org/doi/abs/10.1063/1.447373 (visited on 2018-02-07), doi:10.1063/1.447373.

[852]

T. N. Truong and E. V. Stefanovich. Chem. Phys. Lett., 240:253–260, 1995.

[853]

S.A. Trygubenko and D.J. Wales. A doubly nudged elastic band method for finding transition states. J. Chem. Phys., 120(5):2082–2094, 2004.

[854]

Anil Kumar Tummanapelli and Sukumaran Vasudevan. Dissociation constants of weak acids from ab initio molecular dynamics using metadynamics: Influence of the inductive effect and hydrogen bonding on pKa values. J. Phys. Chem. B, 118(47):13651–13657, 2014. doi:10.1021/jp5088898.

[855]

Anil Kumar Tummanapelli and Sukumaran Vasudevan. Estimating successive pKa values of polyprotic acids from ab initio molecular dynamics using metadynamics: the dissociation of phthalic acid and its isomers. Phys. Chem. Chem. Phys., 17(9):6383–6388, 2015. doi:10.1039/C4CP06000H.

[856]

Liviu Ungur. Ab Initio Methodology for the Investigation of Magnetism in Strongly Anisotropic Complexes. PhD thesis, KU Leuven, 10 2010.

[857]

Liviu Ungur. Introduction to the electronic structure, luminescence, and magnetism of lanthanides. In Pablo Martín-Ramos and Manuela Ramos Silva, editors, Lanthanide-Based Multifunctional Materials, Advanced Nanomaterials, pages 1–58. Elsevier, 2018. URL: http://www.sciencedirect.com/science/article/pii/B9780128138403000016, doi:10.1016/B978-0-12-813840-3.00001-6.

[858]

Liviu Ungur and Liviu F. Chibotaru. Ab initio crystal field for lanthanides. Chem. Eur. J., 23(15):3708–3718, 2017. URL: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201605102, arXiv:https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201605102, doi:10.1002/chem.201605102.

[859]

O. Vahtras, J. Almlöf, and M. W. Feyereisen. Chem. Phys. Lett., 213:514, 1993.

[860]

O. Vahtras, B. Minaev, and H. Ågren. Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem. Phys. Lett., 281(1):186–192, 1997. doi:https://doi.org/10.1016/S0009-2614(97)01169-X.

[861]

C. Van Alsenoy. J. Comput. Chem., 9:620, 1988.

[862]

Willem Van den Heuvel and Alessandro Soncini. NMR chemical shift as analytical derivative of the Helmholtz free energy. J. Chem. Phys., 138:054113, 2013. doi:doi:10.1063/1.4789398.

[863]

E. van Lenthe, E. J. Baerends, and J. G. Snijders. J. Chem. Phys., 99(6):4597–4610, 1993.

[864]

E. van Lenthe, E. J. Baerends, and J. G. Snijders. J. Chem. Phys., 101:9783–9792, 1994.

[865]

C. Van Stappen, D. Maganas, S. DeBeer, E. Bill, and F. Neese. Investigations of the magnetic and spectroscopic properties of V(III) and V(IV) complexes. Inorg. Chem., 57(11):6421–6438, 2018. URL: <Go to ISI>://WOS:000434491700027, doi:10.1021/acs.inorgchem.8b00486.

[866]

C. van Wüllen. J. Chem. Phys., 109:392–399, 1998.

[867]

Libor Veis, Andrej Antalík, Jiri Brabec, Frank Neese, Ors Legeza, and Jiri Pittner. Coupled cluster method with single and double excitations tailored by matrix product state wave functions. J. Phys. Chem. Lett., 7(20):4072–4078, 2016.

[868]

L. Verlet. Phys. Rev., 159:98–103, 1967.

[869]

Toon Verstraelen, Steven Vandenbrande, Farnaz Heidar-Zadeh, Louis Vanduyfhuys, Veronique Van Speybroeck, Michel Waroquier, and Paul W. Ayers. Minimal basis iterative stockholder: atoms in molecules for force-field development. J. Chem. Theory Comput., 12:3894–3912, 2016. URL: https://doi.org/10.1021/acs.jctc.6b00456, doi:10.1021/acs.jctc.6b00456.

[870]

Veacheslav Vieru, Naoya Iwahara, Liviu Ungur, and Liviu F Chibotaru. Giant exchange interaction in mixed lanthanides. Scientific reports, 6:24046, 2016.

[871]

L. Visscher and K. G. Dyall. Atom. Data Nucl. Data Tabl., 67:207, 1997.

[872]

L. von Szentpaly, P. Fuentealba, H. Preuss, and H. Stoll. Chem. Phys. Lett., 93:555–559, 1982.

[873]

S. H. Vosko, L. Wilk, and M. Nusair. Can. J. Phys., 58:1200, 1980.

[874]

T. Vreven, B. Mennucci, C. O. da Silva, K. Morokuma, and J. Tomasi. J. Chem. Phys., 115:62, 2001.

[875]

O. A. Vydrov and T. Van Voorhis. J. Chem. Phys., 133:244103, 2010.

[876]

A. J. H. Wachters. J. Chem. Phys., 52:1033, 1970.

[877]

David J. Wales and Jonathan P. K. Doye. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. The Journal of Physical Chemistry A, 101(28):5111–5116, July 1997. Publisher: American Chemical Society. URL: https://doi.org/10.1021/jp970984n (visited on 2022-04-22), doi:10.1021/jp970984n.

[878]

K. N. Walzl, C. F. Koerting, and A. Kuppermann. Electron-impact spectroscopy of acetaldehyde. J. Chem. Phys., 87:3796–3803, 1987. doi:10.1063/1.452935.

[879]

Y. Wang and M. Dolg. Theor. Chem. Acc., 100:124, 1998.

[880]

A. Weigand, X. Cao, J. Yang, and M. Dolg. Theor. Chem. Acc., 126:117–127, 2010.

[881]

F. Weigend and M. Häser. Theor. Chem. Acc., 97:331, 1997.

[882]

F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs. Chem. Phys. Lett., 294:143, 1998.

[883]

Florian Weigend and Alexander Baldes. Segmented contracted basis sets for one- and two-component Dirac–Fock effective core potentials. J. Chem. Phys., 133(17):174102, 2010. URL: https://doi.org/10.1063/1.3495681, doi:10.1063/1.3495681.

[884]

Florian Weigend, Marco Kattannek, and Reinhart Ahlrichs. Approximated electron repulsion integrals: Cholesky decomposition versus resolution of the identity methods. J. Chem. Phys., 130:164106, 04 2009. doi:https://doi.org/10.1063/1.3116103.

[885]

F. Wennmohs and F. Neese. Chem. Phys., 343:217–230, 2008. doi:.

[886]

Hans-Joachim Werner and Wilfried Meyer. Pno-ci and pno-cepa studies of electron correlation effects: v. static dipole polarizabilities of small molecules. Molecular Physics, 31(3):855–872, 1976.

[887]

J. L. Whitten. J. Chem. Phys., 58:4496, 1973. doi:.

[888]

K. B. Wiberg. Tetrahedron, 24:1083, 1968. doi:.

[889]

E. B. Wilson, J. C. Decius, and P. C. Cross. Molecular Vibrations – the Theory of Infrared and Raman Vibrational Spectra. Dover Publications, 1955.

[890]

L. Wittmann, H. Neugebauer, S. Grimme, and M. Bursch. Dispersion-corrected r2scan based double-hybrid functionals. J. Chem. Phys., 2023.

[891]

D. E. Woon and T. H. Dunning Jr. J. Chem. Phys., 98:1358, 1993.

[892]

D. E. Woon and T. H. Dunning Jr. J. Chem. Phys., 100:2975, 1994.

[893]

Axel Wuttke and Ricardo A Mata. Visualizing dispersion interactions through the use of local orbital spaces. J. Comput. Chem., 38(1):15–23, 2017.

[894]

Xin Xu and William A. Goddard, III. Proc. Nat. Acad. Sci., 101:2673, 2004.

[895]

Kiyoshi Yagi, Kimihiko Hirao, Tetsuya Taketsugu, Michael W. Schmidt, and Mark S. Gordon. \emph Ab initio vibrational state calculations with a quartic force field: Applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6. J. Chem. Phys., 121(3):1383–1389, 07 2004. URL: http://aip.scitation.org/doi/10.1063/1.1764501 (visited on 2020-04-14), doi:10.1063/1.1764501.

[896]

K. Yamaguchi, F. Jensen, A. Dorigo, and K. N. Houk. Chem. Phys. Lett., 149:537, 1988.

[897]

K. Yamaguchi, Y. Takahara, and T. Fueno. In V. H. Smith, editor, Applied Quantum Chemistry, pages 155. Wiley, 1986.

[898]

K. Yamamoto, J. K. Li, J. A. O. Garber, J. D. Rolfes, G. B. Boursalian, J. C. Borghs, C. Genicot, J. Jacq, M. van Gastel, F. Neese, and T. Ritter. Palladium-catalysed electrophilic aromatic C-H fluorination. Nature, 554(7693):511–514, 2018. URL: <Go to ISI>://WOS:000425597400043, doi:10.1038/nature25749.

[899]

T. Yanai, D. P. Tew, and N. C. Handy. Chem. Phys. Lett., 393:51–57, 2004.

[900]

J. Yang and M. Dolg. Theor. Chem. Acc., 113:212, 2005.

[901]

Danny L. Yeager and Poul Jø rgensen. A multiconfigurational time-dependent Hartree–Fock approach. Chem. Phys. Lett., 65:77–80, 1979.

[902]

D. Yepes, F. Neese, B. List, and G. Bistoni. Unveiling the delicate balance of steric and dispersion interactions in organocatalysis using high-level computational methods. J. Am. Chem. Soc., 142(7):3613–3625, 2020. URL: <Go to ISI>://WOS:000515214000044, doi:10.1021/jacs.9b13725.

[903]

Diana Yepes, Frank Neese, Benjamin List, and Giovanni Bistoni. Unveiling the delicate balance of steric and dispersion interactions in organocatalysis using high-level computational methods. J. Am. Chem. Soc., 142(7):3613–3625, 2020. URL: https://doi.org/10.1021/jacs.9b13725, arXiv:https://doi.org/10.1021/jacs.9b13725, doi:10.1021/jacs.9b13725.

[904]

D. M. York and M. Karplus. J. Phys. Chem. A, 103:11060–11079, 1999.

[905]

Feng Yu. Spin-Component-Scaled Double-Hybrid Density Functionals with Nonlocal van der Waals Correlations for Noncovalent Interactions. J. Chem. Theory Comput., 10(10):4400–4407, 10 2014. URL: https://doi.org/10.1021/ct500642x (visited on 2020-09-15), doi:10.1021/ct500642x.

[906]

M. C. Zerner. Int. J. Quant. Chem., 35:567, 1989.

[907]

M. C. Zerner. In K. B. Lipkowitz and D. B. Boyd, editors, Reviews in Computational Chemistry, volume 2, pages 313. Wiley-VCH, 1990.

[908]

M. C. Zerner. In D. R. Salahub and N. Russo, editors, Metal-Ligand Interactions: From Atoms to Clusters to Surfaces, pages 101. Kluwer Academic Publishers, 1992.

[909]

M. C. Zerner. In D. R. Salahub and N. Russo, editors, Metal-Ligand Interactions: Structure and Reactivity, pages 493. Kluwer Academic Publishers, 1992.

[910]

M. C. Zerner and M. Hehenberger. Chem. Phys. Lett., 62:550, 1979.

[911]

M. C. Zerner, G. H. Loew, R. F. Kirchner, and U. T. Mueller-Westerhoff. J. Am. Chem. Soc., 102:589, 1980.

[912]

Dominika Zgid, Debashree Ghosh, Eric Neuscamman, and Garnet Kin-Lic Chan. A study of cumulant approximations to n-electron valence multireference perturbation theory. J. Chem. Phys., 130:194107, 05 2009.

[913]

Y. Zhang and W. Yang. Phys. Rev. Lett., 80:890, 1998.

[914]

Y. Zhao and D. G. Truhlar. J. Phys. Chem. A, 109:5656–5667, 2005.

[915]

Y. Zhao and Donald G. Truhlar. J. Chem. Phys., 125:194101, 2006.

[916]

Y. Zhao and Donald G. Truhlar. Theor. Chem. Acc., 120:215, 2008.

[917]

Jingjing Zheng, Xuefei Xu, and Donald G Truhlar. Theor. Chem. Acc., 128:295–305, 2010.

[918]

Y. C. Zheng and J. Almlöf. Chem. Phys. Lett., 214:397, 1993.

[919]

Y. C. Zheng and J. Almlöf. J. Mol. Struct.: THEOCHEM, 388:277, 1996.

[920]

Ting Zhu, Ju Li, Amit Samanta, Hyoung Gyu Kim, and Subra Suresh. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Nat. Acad. Sci., 104(9):3031–3036, 2007. URL: https://www.pnas.org/content/104/9/3031, arXiv:https://www.pnas.org/content/104/9/3031.full.pdf, doi:10.1073/pnas.0611097104.

[921]

J. Patrick Zobel, Juan J. Nogueira, and Leticia Gonzalez. The IPEA Dilemma in CASPT2. Chem. Sci., 09 2016.

[922]

Gamess program. Gamess user manual.