7.31. Excited States via ROCIS and DFT/ROCIS

The ORCA program package includes the orca_rocis module to perform configuration interaction with single excitations (CIS) calculations using a restricted open-shell Hartee-Fock (ROHF) reference function. It produces excitation energies, absorption energies and CD intensities. It was designed with the aim to reproduce and - even more importantly - reliably predict transition metal L-edges as observed in X-ray absorption spectroscopy (XAS).

7.31.1. General Use

In the present implementation the orca_rocis module is only able to perform CIS calculations on top of a high-spin ROHF reference function. All spins of the unpaired electrons have to be coupled ferrmoagnetically to give a total spin of \(S = \frac{1}{2}N\), where \(N\) is the number of unpaired electrons. Other ROHF functions such as Zerner’s configuration averaged or spin averaged ROHF cannot be used as reference. The input for a high spin ROHF calculation is done in the %scf block.

%scf
  HFTyp ROHF          # Flag for ROHF
  ROHF_Case HighSpin  # selects the high-spin case
  ROHF_NEl[1] = 4     # the number of unpaired electrons
end

In our experience ROHF calculations suffer a lot from convergence problems. UHF calculations generally exhibit better convergence properties. In most cases the quasi-restricted orbitals (qro’s) of a UHF calculation resemble the ROHF orbitals. Thus the program features the ability to start a ROCIS calculation on top of a UHF calculation. It will automatically create the qro’s and build the reference determinant with them. If one wants to avoid the (small) errors that are introduced by this procedure, one may take the qro’s of a UHF calculation as starting orbitals for a subsequent ROHF calculation. Furthermore it is possible to invoke the orca_rocis module for closed-shell molecules. The program will then perform a CI calculation with the provided RHF reference function. In this case it will yield the same result as the orca_cis program.

A number of basic variables in the %rocis block control the settings of the Davidson procedure that is used to solve the CI problem:

%rocis
  NRoots 6      # number of desired roots
  MaxDim 5      # Davidson expansion space = MaxDim * NRoots
  ETol  1e-6    # energy convergence tolerance
  RTol  1e-6    # residual vector convergence tolerance
  MaxIter 35    # maxmimum number of iterations
  NGuessMat 512 # dimension of the guess matrix: 512x512
end

The dimension of the iterative subspace is given by MaxDim \(\cdot\) NRoots. The lowest possible choice for MaxDim is a value of 2. In general, by choosing MaxDim \(\approx\) 5-10 times NRoots you will achieve a more favorable convergence by the cost of an increased disk space requirement. Increasing the NGuessMat variable will improve the convergence of the iterative CI procedure. The amount of output produced during the calculation is controlled via the PrintLevel variable

%rocis NRoots 3
       PrintLevel 3
       end

Note, that this does not influence which spectra are calculated or printed. The absorption spectrum calculated on the basis of the pure dipole approximation for your calculation is always printed. In addition, it is possible to allow for electric quadrupole and magnetic dipole contributions to the absorption spectrum as well as to calculate the CD spectrum check section (One Photon Spectroscopy) for details. By defining in the %rocis block:

%rocis
  NRoots 6
  DoDipoleLength        true
  DoDipoleVelocity      true
  DoHigherMoments       true
  DecomposeFoscLength   true
  DecomposeFoscVelocity true
  DoFullSemiclassical   true
  DoCD                  true
end

The printed spectra look like this:

-----------------------------------------------------------------------------
         ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------
State   Energy  Wavelength   fosc         T2         TX        TY        TZ
        (cm-1)    (nm)                  (au**2)     (au)      (au)      (au)
-----------------------------------------------------------------------------
   1    2635.0   3795.1   0.000000001   0.00000   0.00001  -0.00001   0.00029
   2    4365.5   2290.7   0.000011416   0.00086   0.01200  -0.00864   0.02534
   3    4368.2   2289.3   0.000011174   0.00084  -0.02006   0.01442   0.01523
   4    5977.9   1672.8   0.000093897   0.00517  -0.04164  -0.05863   0.00000
   5   65245.3    153.3   0.027669631   0.13961  -0.20555  -0.31203  -0.00023

-----------------------------------------------------------------------------
         ABSORPTION SPECTRUM VIA TRANSITION VELOCITY DIPOLE MOMENTS
-----------------------------------------------------------------------------
State   Energy  Wavelength   fosc         P2         PX        PY        PZ
        (cm-1)    (nm)                  (au**2)     (au)      (au)      (au)
-----------------------------------------------------------------------------
   1    2635.0   3795.1   0.000000085   0.00000  -0.00000   0.00000  -0.00004
   2    4365.5   2290.7   0.001777771   0.00005  -0.00315   0.00223  -0.00618
   3    4368.2   2289.3   0.001850956   0.00006   0.00526  -0.00372  -0.00371
   4    5977.9   1672.8   0.003237195   0.00013   0.00667   0.00937   0.00000
   5   65245.3    153.3   0.057301314   0.02555   0.08779   0.13358   0.00010

-------------------------------------------------------------------
                             CD SPECTRUM
-------------------------------------------------------------------
State   Energy Wavelength       R         MX        MY        MZ
        (cm-1)   (nm)       (1e40*sgs)   (au)      (au)      (au)
-------------------------------------------------------------------
   1    2635.0   3795.1      0.00007  -0.00511  -0.01539   0.00021
   2    4365.5   2290.7     10.02484   0.57434  -0.40490   0.42899
   3    4368.2   2289.3    -10.03730   0.34432  -0.24269  -0.71470
   4    5977.9   1672.8      0.01537  -0.00033  -0.00032  -0.00286
   5   65245.3    153.3     -0.00865   0.00004   0.00003  -0.00005

-----------------------------------------------------------------------------------------------------
                COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM
-----------------------------------------------------------------------------------------------------
State   Energy Wavelength    D2        m2        Q2         D2+m2+Q2       D2/TOT    m2/TOT    Q2/TOT
        (cm-1)   (nm)                (*1e6)    (*1e6)
-----------------------------------------------------------------------------------------------------
  1    2635.0   3795.1   0.00000   0.00011   0.00000   0.00000000080469   0.86010   0.13938   0.00052
  2    4365.5   2290.7   0.00001   0.47866   0.00000   0.00001189497194   0.95976   0.04024   0.00000
  3    4368.2   2289.3   0.00001   0.48629   0.00000   0.00001166062671   0.95830   0.04170   0.00000
  4    5977.9   1672.8   0.00009   0.00001   0.00001   0.00009389664707   1.00000   0.00000   0.00000
  5   65245.3    153.3   0.02767   0.00000   0.06183   0.02766969236508   1.00000   0.00000   0.00000


-----------------------------------------------------------------------------------------------------
      COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (origin adjusted)
-----------------------------------------------------------------------------------------------------
State   Energy Wavelength    D2        m2        Q2         D2+m2+Q2       D2/TOT    M2/TOT    Q2/TOT
        (cm-1)   (nm)                (*1e6)    (*1e6)
-----------------------------------------------------------------------------------------------------
  1    2635.0   3795.1   0.00000   0.00000   0.00000   0.00000000069409   0.99716   0.00016   0.00268
  2    4365.5   2290.7   0.00001   0.38277   0.00039   0.00001179947536   0.96753   0.03244   0.00003
  3    4368.2   2289.3   0.00001   0.36798   0.00045   0.00001154275975   0.96808   0.03188   0.00004
  4    5977.9   1672.8   0.00009   0.00000   0.00001   0.00009389663928   1.00000   0.00000   0.00000
  5   65245.3    153.3   0.02767   0.00003   0.06176   0.02766969232228   1.00000   0.00000   0.00000

Furthermore like in TD-DFT (section Use of TD-DFT for the Calculation of X-ray Absorption Spectra) or CASSCF one may obtain intensities by evaluating the 2nd order oscillation strengths, or the full semi-classical oscillation strengths.

  • The exact oscillation strengths behave like the multipole expansion in the velocity representation.

  • They are by definition origin independent they do not suffer from artificial negative values like the multipole moments beyond 1st order.

  • They are used with the multipole moments up to 2nd order to regenerate the electric dipole, electric quadrupole and magnetic dipole contributions in either length or the velocity representation.

For the Fe K-edge XAS spectrum of [FeCl\(_4\)]\(^{2-}\). This will result in addition to the following tables for the velocity representation:

       -------------------------------------------------------------------------------------------------------------
       COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Origin Independent, Velocity)
       -------------------------------------------------------------------------------------------------------------
       State   Energy    Wavelength  P2        m2        Q2    P2+m2+Q2+PM+PO     P2/TOT    m2/TOT    Q2/TOT 
       (cm-1)      (nm)              (*1e6)    (*1e6)                                                 
       -------------------------------------------------------------------------------------------------------------
       1 57131638.5      0.2   0.00000   0.00000   3.75184   0.00000375184371   0.00000   0.00000   1.00000
       2 57131638.5      0.2   0.00000   0.00000   3.75184   0.00000375184267   0.00000   0.00000   1.00000
       3 57145543.6      0.2   0.00007   0.00000   3.46619   0.00007086820341   0.95853   0.00000   0.04891
       4 57145543.6      0.2   0.00007   0.00000   3.46620   0.00007078008474   0.95972   0.00000   0.04897
       5 57145543.6      0.2   0.00007   0.00000   3.46620   0.00007084079919   0.95889   0.00000   0.04893
       11 57351031.6      0.2   0.00000   0.00000   0.00000   0.00000000000002   0.99463   0.00618   0.00216
       12 57351031.6      0.2   0.00000   0.00000   0.00000   0.00000000000001   0.00000   0.00000   0.00000
       13 57351031.6      0.2   0.00000   0.00000   0.00000   0.00000000000002   0.99414   0.00692   0.00217
       15 57354687.7      0.2   0.00000   0.00000   0.00000   0.00000000000888   0.00898   0.00000   0.00002
       
       
       -------------------------------------------------------------------------------------------------------------
       COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Exact Formulation, Velocity) 
       -------------------------------------------------------------------------------------------------------------
       State   Energy    Wavelength  P2        m2        Q2    Exact Osc. Strength  P2/TOT    m2/TOT    Q2/TOT      
       (cm-1)      (nm)              (*1e6)    (*1e6)                                                       
       -------------------------------------------------------------------------------------------------------------
       1 57131638.5      0.2   0.00000   0.00000   3.02719   0.00000302719471   0.00000   0.00000   1.00000
       2 57131638.5      0.2   0.00000   0.00000   2.66225   0.00000266224706   0.00000   0.00000   1.00000
       3 57145543.6      0.2   0.00007   0.00000   3.46619   0.00007092969904   0.95853   0.00000   0.04891
       4 57145543.6      0.2   0.00007   0.00000   3.46620   0.00007074406444   0.95972   0.00000   0.04897
       5 57145543.6      0.2   0.00007   0.00000   3.46620   0.00007075200792   0.95889   0.00000   0.04893
       11 57351031.6      0.2   0.00000   0.00000   0.00000   0.00000000000002   0.99463   0.00618   0.00216
       12 57351031.6      0.2   0.00000   0.00000   0.00000   0.00000000000001   0.98256   0.01631   0.00209
       13 57351031.6      0.2   0.00000   0.00000   0.00000   0.00000000000002   0.99414   0.00692   0.00217
       15 57354687.7      0.2   0.00000   0.00000   0.00000   0.00000000001200   0.00898   0.00000   0.00002
       ....

These spectra are plotted by calling:

orca_mapspc  MyOutput.out ABS/ABSV/CD/ABSQ/ABSOI/ABSVOI -eV -x0(start) -x1(stop) 
                     -w(width) -n(points)

In particular ABSOI and ABSVOI will plot the exact transition moments spectra at the Length and Velocity representations (For the multiple expansion contributions).

If calculations on large molecules are conducted, the integral transformation will be the most time-consuming part. Therefore it is strongly recommended to use the resolution of the identity (RI) approximation in those cases. It effectively reduces the computational costs of the transformation step by only introducing minor errors to the calculation. It has to be kept in mind that in order to keep the introduced errors small, one has to provide a reasonable auxiliary basis sets along with your normal basis set input.

Starting from ORCA 4.0 the basis set definition on ORCA has changed. This also affects the definition of the auxiliary basis set when the DoRI keyword is set. ROCIS will then only allow in the mainline /C auxiliary basis sets to be set (i.e. def2-TZVP/C). As these basis are usually optimised on the presence of effective core potentials (ECPs) they are generally not recommended for core-electron calculations. The /J auxiliary basis set need to be used and they are specified in the following way.

%basis
AuxC "def2/J" 
end
! def2-TZVP def2-TZVP/C TightSCF SlowConv

%SCF 	HFTyp ROHF
		ROHF_Case HighSpin
		ROHF_Nel[1] = 1
		End

%ROCIS	NROOTS 5
		DoRI true		# invokes the RI approximation
		DoHigherMoments true
		end

* xyz 0 2
N 0 0 0
O 0 0 1.15
*

The orca_rocis module provides two ways of choosing the orbital excitation space: by orbital energy or orbital number. In the former case an energy window has to be specified and the program will then take all orbitals, whose orbital energies lie within this window, into account. Note, that one actually has to define two orbital windows: One for the donor and the second for the acceptor orbital. The input of the windows is done as an array: The first two numbers define the donor space while the last two numbers define the acceptor space.

%rocis
  NRoots 3
  EWin = -5,5,-5,5
end

The default is to keep core orbitals and very high lying virtual orbitals out of their respective orbital excitation spaces. Since these orbitals span a space that is usually not reachable with regular UV/Vis spectroscopy, this is a reasonable approximation. One has to keep in mind that an orbital energy window makes only sense if the orbitals used in the calculation have a well-defined orbital energy. As a consequence one cannot use an orbital energy window for a calculation with localized orbitals. The second way to specify the excitation space is by orbital numbering.

%rocis
  NRoots 3
  OrbWin = 1,13,9,22
end

In restricted calculations only one set of spatial orbitals is created. Hence it is not necessary to provide orbital windows for \(\alpha\) and \(\beta\) electrons separately. Of course, only doubly or singly occupied orbitals can act as donor orbitals and only singly and nonoccupied orbitals can act as acceptor orbitals. The program recognises nonoccupied orbitals in the donor space and doubly occupied orbitals in the acceptor space and removes both.

The many-electron expansion space of a ROCIS calculation in ORCA is divided into five classes. Using second quantised replacement operators \(E_{p}^{q} =\hat{{a} }_{q\alpha }^{\uparrow } \hat{{a} }_{p\alpha } +\hat{{a} }_{q\beta }^{\uparrow } \hat{{a} }_{p\beta }\) they take the form[727].

(7.236)\[\begin{split}\begin{array}{l} \left| \Phi_i^s \right\rangle= E_{i}^{s} \left| 0 \right\rangle\\ \left| \Phi_s^a \right\rangle= E_{s}^{a} \left| 0 \right\rangle\\ \left| \Phi_i^a \right\rangle= \frac{1}{\sqrt 2 }E_{i}^{a} \left| 0 \right\rangle\\ \left| \Phi_{ti}^{as} \right\rangle=E_{t}^{a} E_{i}^{s} \left| 0 \right\rangle\\ \left| \Phi_{ti}^{as} \right\rangle= \frac{1}{\sqrt 6 }\left( E_{i}^{a} -2E_{s}^{a} E_{i}^{s} \right)\left| 0 \right\rangle\\ \end{array} \end{split}\]

The orbital label \(i\) denotes a doubly occupied orbital, \(s\) and \(t\) refer to singly occupied orbitals and orbital label \(a\) corresponds to a virtual orbital. The form of the excitation classes ensures that all excited states are eigenfunctions of the \(\hat{{S} }^{2}\)-operator and have the same total spin \(S\) as the electronic ground state. Each of the five excitation classes can be switched on or off manually.

%rocis
  NRoots 3
  Do_is true     # Include DOMO->SOMO excitations
  Do_sa true     # Include SOMO->Virtual excitations
  Do_ia true     # Include DOMO->Virtual excitations
  Do_ista true   # Include DOMO->SOMO coupled to
                 # SOMO->Virtual excitations with s not equal t
  Do_isa true    # Include DOMO->SOMO coupled to
                 # SOMO->Virtual excitations with s = t
                 # ---------------------------------
                 # by default all switches for the
                 # excitation classes are set to
                 # ``true''
                 # ---------------------------------
end

Formally, the \(\left| \Phi_{ti}^{as} \right\rangle\) and \(\left| \Phi_{ti}^{at} \right\rangle\) excitation classes can be regarded as double excitations. When the program finishes the ROCIS calculation it gives the excitation energy together with the composition for each root. According to the number of labels of the respective functions \(\left|\Phi \right\rangle\), contributions from excited configuration state functions belonging to the different excitation classes are given by two, three or four numbers.

STATE   5   Exc. Energy: 297.279mEh   8.089eV       65245.3cm**-1
      47->50               :   0.2196
      47->51               :   0.0138
      37->50               :   0.1165
      41->50               :   0.0960
      38->46   ;   47->50  :   0.0103
      37->46  ->50         :   0.0150
      37->47  ->50         :   0.0938
      37->48  ->50         :   0.0179
      37->49  ->50         :   0.0179
      41->46  ->50         :   0.0174
      41->47  ->50         :   0.0585
      41->48  ->50         :   0.0213
      41->49  ->50         :   0.0211

Furthermore the orca_rocis module is able to calculate the effect of spin-orbit coupling (SOC) on the calculated ground and excited states. It introduces SOC in the framework of quasi-degenerate perturbation theory (QDPT). The SOC Hamiltonian is diagonalized in the basis of the calculated ROCIS states \(\left| \Psi_I^{SM} \right\rangle\), where \(I\) is the root label and \(S\) and \(M\) are the spin and magnetic spin quantum numbers, respectively[622], [727].

%rocis
  NRoots 3
  OrbWin = 1, 3 ,9 ,22
  SOC true        # invokes the calculation of SOC effects
  TEMPERATURE 10  # temperature for SOC corrected spectra in Kelvin
end

After the SOC calculation the program will produce additional spectra for the SOC corrected results. The spectra contain transitions from the \(2S+1\) lowest lying states into all excited states, where S is the spin quantum number of the electronic ground state. These \(2S+1\) lowest states may be split up in the order of 1-100 cm\(^{-1}\). Due to the small magnitude of the splitting, all of the \(2S+1\) states can be significantly populated even at low temperatures. Experimentally, the intensity of a given transition is dependent on the population of the corresponding initial state. With the TEMPERATURE keyword the population of the theoretically calculated states can be manipulated by the varying the fictive temperature of the system. It has to be mentioned that the electric quadrupole transitions between spin-orbit coupled states are not well defined and are likely to give unreasonable results. Hence it is recommended to use the DoHigherMoments keyword only for calculations that do not include SOC.

-------------------------------------------------------------------------------
SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------
States    Energy  Wavelength   fosc         T2         TX        TY        TZ
          (cm-1)    (nm)                  (au**2)     (au)      (au)      (au)
-------------------------------------------------------------------------------
 0  1       5.6      0.0   0.000000000   0.00000   0.00003   0.00002   0.00000
 0  2       6.2      0.0   0.000000000   0.00000   0.00000   0.00000   0.00005
 0  3      23.7   422287.3   0.000000000   0.00000   0.00000   0.00000   0.00000
 0  4      23.7   421562.8   0.000000000   0.00000   0.00018   0.00025   0.00000
 0  5    2621.7   3814.3   0.000000000   0.00000   0.00000   0.00001   0.00005
 0  6    2622.0   3813.9   0.000000000   0.00000   0.00003   0.00012   0.00000
 0  7    2634.7   3795.5   0.000000095   0.00002   0.00388   0.00273   0.00049
 0  8    2634.9   3795.2   0.000000103   0.00002   0.00039   0.00027   0.00495
 0  9    2639.5   3788.6   0.000000001   0.00000   0.00001   0.00001   0.00036
 0 10    4223.6   2367.6   0.000000103   0.00002   0.00043   0.00029   0.00390
 0 11    4223.9   2367.5   0.000000120   0.00002   0.00348   0.00236   0.00046
 0 12    4296.3   2327.6   0.000000696   0.00010   0.00562   0.00842   0.00000
 0 13    4357.6   2294.8   0.000000002   0.00000   0.00001   0.00001   0.00049
 0 14    4418.1   2263.4   0.000005778   0.00083   0.00653   0.00468   0.02762
 0 15    4422.1   2261.4   0.000005517   0.00079   0.02184   0.01559   0.00832
 0 16    4488.2   2228.0   0.000000001   0.00000   0.00004   0.00006   0.00038
 0 17    4524.2   2210.3   0.000000001   0.00000   0.00030   0.00018   0.00000
 0 18    4597.2   2175.2   0.000000027   0.00000   0.00023   0.00016   0.00191
 0 19    4597.4   2175.2   0.000000051   0.00001   0.00213   0.00153   0.00023
 0 20    6043.6   1654.6   0.000047989   0.00502   0.04104   0.05779   0.00000
 0 21    6049.5   1653.0   0.000000014   0.00000   0.00109   0.00057   0.00001
 0 22    6051.3   1652.5   0.000000021   0.00000   0.00001   0.00004   0.00150
 0 23    6069.7   1647.5   0.000000000   0.00000   0.00005   0.00007   0.00000
 0 24    6069.9   1647.5   0.000000028   0.00000   0.00098   0.00138   0.00000
 0 25   65281.7    153.2   0.014223474   0.13787   0.20423   0.31010   0.00023
 0 26   65281.7    153.2   0.000000035   0.00000   0.00032   0.00048   0.00011
 0 27   65281.7    153.2   0.000009000   0.00009   0.00522   0.00774   0.00001
 0 28   65281.7    153.2   0.000007207   0.00007   0.00460   0.00698   0.00000
 0 29   65281.7    153.2   0.000047448   0.00046   0.01179   0.01791   0.00001
 1  2       0.6      0.0   0.000000000   0.00000   0.00001   0.00001   0.00000
 1  3      18.1   553477.5   0.000000000   0.00000   0.00000   0.00000   0.00009
 1  4      18.1   552233.6   0.000000000   0.00000   0.00006   0.00004   0.00000
 1  5    2616.1   3822.5   0.000000063   0.00001   0.00006   0.00003   0.00261
 1  6    2616.4   3822.1   0.000000060   0.00001   0.00211   0.00144   0.00006
 1  7    2629.1   3803.6   0.000000143   0.00002   0.00225   0.00321   0.00003
 1  8    2629.3   3803.3   0.000000002   0.00000   0.00015   0.00025   0.00040
 1  9    2633.9   3796.7   0.000000271   0.00003   0.00011   0.00008   0.00538
 1 10    4218.0   2370.8   0.000000005   0.00000   0.00031   0.00046   0.00019
...

If the PrintLevel value is set to 3 or higher, the program will print out the composition of the SOC corrected states in the basis of states \(\left| \Psi_I^{SM} \right\rangle\).

Eigenvectors of SOC calculation:
the threshold for printing is: 0.010000
        weight : Root Spin Ms
State 0:       0.00 cm**-1    0.00000 eV
    0.378045   :  0    2    2
    0.235825   :  0    2    0
    0.378045   :  0    2   -2

State 1:       5.61 cm**-1    0.00070 eV
    0.496236   :  0    2    2
    0.496236   :  0    2   -2

State 2:       6.20 cm**-1    0.00077 eV
    0.496291   :  0    2    1
    0.496291   :  0    2   -1

Further details of the SOC calculation such as the procedure of SOC integral calculation can be controlled via the %rel block (section Relativistic Options.

7.31.2. Transition Metal L-Edges with ROCIS or DFT/ROCIS

The orca_rocis program was designed to calculate transition metal L-edge spectra of large molecules as they are observed in X-ray absorption spectroscopy (XAS). An L-edge results when an electron is promoted from the 2p shell of a transition metal ion into the valence d shell by an X-ray photon. Strong spin-orbit coupling in the 2p shell and p-d coupling phenomena complicate the interpretation and even more so the prediction of these spectra. It has to be kept in mind that the present program applies a variety of approximations which might lead to observable deviations from experimentally determined spectra. However, we believe that the results obtained from the program are in general qualitatively correct and in most cases accurate close to the experimental uncertainty. In cases where quantitative accuracy is not met, the provided results might still give some insight into the mechanisms of intensity distribution in the spectra.

The special input structure for orbital windows described in General Use allows the user to restrict the donor orbital space to the transition metal 2p shell. The acceptor orbital space is the same as in regular UV/Vis spectroscopy. It should include all singly occupied molecular orbitals and as many virtual orbitals as one can afford in the calculation. The number of roots should be chosen large enough so that at least all 2p-3d single excitations are calculated. In many cases even more roots are required since doubly excited or charge transfer states may become important. Moreover the strong SOC apparent in the 2p shell of transition metal ions necessitates the additional calculation of excited states with a total spin of \(S' = S + 1\) and \(S' = S -1\) where \(S\) is the total spin of the electronic ground state. Accordingly four additional excitation classes introduce excited configuration state functions with a lower and higher spin multiplicity. They feature the second quantized spin raising and lowering operators \(\hat{{S} }_{pq}^{+} =\hat{{a} }_{q\alpha}^{\uparrow} \hat{{a} }_{p\beta }\), \(\hat{{S} }_{pq}^{-} =\hat{{a} }_{q\beta}^{\uparrow } \hat{{a} }_{p\alpha }\).

(7.237)\[\begin{split} \begin{array}{r} \left. \begin{array}{l} \left| \Phi_{i}^{\left(t-\right)} \right\rangle =\sqrt{ \frac{2{S}'+1}{2{S}'+2} } S_{ti}^{-} \left| 0 \right\rangle-\sum\limits_{u \neq t}^{\text{SOMO}} {\frac{1}{\sqrt{2{S}'+1}}\frac{1}{\sqrt{2{S}'+2} }S_{uu}^{-} E_{i}^{t} \left|0 \right\rangle} \\ \left| \Phi_{i}^{\left(t-\right)} \right\rangle =\sqrt{ \frac{2{S}'+1}{2{S}'+2} } S_{ti}^{-} \left| 0 \right\rangle-\sum\limits_{u \ne t}^{\text{SOMO} } { \frac{1}{\sqrt{ 2{S}'+1} }\frac{1}{\sqrt{ 2{S}'+2} }S_{uu}^{-} E_{i}^{t} \left|0 \right\rangle} \\ \left| \Phi_{i}^{\left(a-\right)} \right\rangle =\sqrt{ \frac{2{S}'+1}{2{S}'+3} } S_{ai}^{-} \left| 0 \right\rangle-\sum\limits_{t}^{\text{SOMO} } { \sqrt{\frac{\left({ S}' +1\right)^2 - { S}'^2}{\left({ S}'+1\right)\left(2{S}'+3\right)} }\frac{1}{\sqrt{ 2\left(2{S}'+2\right)} } S_{tt}^{-} E_{i}^{a} \left|0 \right\rangle}\\ \hspace{2cm} + \sum\limits_{t, u \ne t}^{\text{SOMO} } { \sqrt{\frac{2}{\left(2{S}'+2\right)\left(2{S}'+3\right)} }\sqrt{\frac{1}{\left(2{S}'+2\right)2\left(2{S}'+1\right)} } S_{tt}^{-} S_{uu}^{-} S_{ai}^{+} \left|0 \right\rangle} \end{array} \right\} \quad S' = S-1 \\ \left. \left| \Phi_{i}^{a^+} \right \rangle = S_{ai}^{+} \left| 0 \right \rangle \right\} \quad { S}' = S +1 \end{array} \end{split}\]

Inclusion of configuration state functions with higher or lower multiplicity is invoked with the keywords DoLowerMult and DoHigherMult, respectively.

%rocis
  NRoots 20
  SOC true
  DoRI true
  PrintLevel 3
  DoLowerMult true     #Invokes a CI calculation  #with S'=S-1
  DoHigherMult true    #Invokes a CI calculation  #with S'=S+1
  OrbWin = 6,8,0,2000
end

The program will conduct a separate Davidson procedure for each multiplicity. Subsequently it gives the excitation energies and compositions of the calculated excited states for all included multiplicities. After all CI calculations are finished, the program gives a list of all calculated roots with their excitation energies and their multiplicities. It is this number that will be referred to as label \(I\) in the decomposition of spin-orbit coupled states in the basis \(\left| \Psi_{I}^{SM} \right\rangle\). It is very important to note, that when states with different multiplicities are calculated this number might deviate from the number that appears in the respective CI part of the output. If one gets confused about the numbering of the states, the state energies might act as a guideline through the output of the program.

Without SOC the spin exclusion rule applies which means that only excited states with a total spin equal to the ground state spin (\(S' = S\)) give rise to non-vanishing intensities. Hence, only these transitions are listed in the spectra before SOC.

--------------------------------------------------------------------------------
    ROOT    Mult      Excitation energy[Eh]           [cm-1]          [eV]
--------------------------------------------------------------------------------
     0       5            0.00000000                      0.00          0.000
     1       5            26.24822856                5760820.28        714.251
     2       5            26.24833619                5760843.90        714.254
     3       5            26.27159871                5765949.43        714.887
     4       5            26.27982129                5767754.08        715.110
     5       5            26.30321870                5772889.22        715.747
     6       5            26.30458669                5773189.46        715.784
     7       5            26.33143414                5779081.79        716.515
     8       5            26.33600432                5780084.83        716.639
     9       5            26.33865219                5780665.97        716.711
    10       5            26.34522494                5782108.52        716.890
    11       5            26.34577552                5782229.36        716.905
    12       5            26.35183534                5783559.34        717.070
    13       3            26.42121780                5798787.03        718.958
    14       3            26.42122881                5798789.45        718.958

...

    42       7            27.22926558                5976133.02        740.946
    43       7            27.23201078                5976735.52        741.021
    44       7            27.23280499                5976909.83        741.042
    45       7            27.23594814                5977599.67        741.128
    46       7            27.23865050                5978192.77        741.201
    47       7            27.26590445                5984174.32        741.943
    48       7            27.26597947                5984190.78        741.945
    49       7            27.26604364                5984204.87        741.947
    50       3            27.29447169                5990444.10        742.720
    51       3            27.30121861                5991924.88        742.904
    52       3            27.30655497                5993096.08        743.049
    53       3            27.30685328                5993161.55        743.057
    54       3            27.31274496                5994454.62        743.218
    55       7            27.52164817                6040303.58        748.902
    56       7            27.52433114                6040892.42        748.975
    57       7            27.52448641                6040926.50        748.979
    58       7            27.53903479                6044119.50        749.375
    59       7            27.53935644                6044190.10        749.384

------------------------
ROCIS-EXCITATION SPECTRA
------------------------

NOTE: At this point no SOC is included!!!
Hence only transitions to states with the same spin multiplicity
as the ground state are observed!!!

Center of mass = ( -0.0011, -0.0021,  0.0000)
Calculating the Dipole integrals                  ... done
Transforming integrals                            ... done
Calculating the Linear Momentum integrals         ... done
Transforming integrals                            ... done

-----------------------------------------------------------------------------
         ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------
State   Energy  Wavelength   fosc         T2         TX        TY        TZ
        (cm-1)    (nm)                  (au**2)     (au)      (au)      (au)
-----------------------------------------------------------------------------
   1 5760820.3      1.7   0.000985130   0.00006   0.00612  -0.00434   0.00011
   2 5760843.9      1.7   0.000777158   0.00004  -0.00008   0.00006   0.00666
   3 5765949.4      1.7   0.000000036   0.00000   0.00000   0.00001  -0.00004
   4 5767754.1      1.7   0.000007564   0.00000   0.00033   0.00057  -0.00000
   5 5772889.2      1.7   0.025379335   0.00145  -0.00031   0.00021  -0.03804
   6 5773189.5      1.7   0.026898175   0.00153   0.03203  -0.02254  -0.00039
   7 5779081.8      1.7   0.000000323   0.00000  -0.00006  -0.00009  -0.00008
   8 5780084.8      1.7   0.001711738   0.00010  -0.00572  -0.00805   0.00001
   9 5780666.0      1.7   0.113054940   0.00644  -0.04616  -0.06564  -0.00001
  10 5782108.5      1.7   0.151287595   0.00861   0.00073  -0.00052   0.09281
  11 5782229.4      1.7   0.147199895   0.00838   0.07488  -0.05266  -0.00088
  12 5783559.3      1.7   0.000000026   0.00000   0.00001  -0.00001   0.00004
  28 5960986.7      1.7   0.004292708   0.00024  -0.00881  -0.01263  -0.00000
  29 5963084.1      1.7   0.001638281   0.00009  -0.00774   0.00553   0.00006
  30 5963136.7      1.7   0.001369356   0.00008  -0.00005   0.00003  -0.00869
  31 5963484.9      1.7   0.000935993   0.00005   0.00415   0.00587  -0.00000
  32 5968477.0      1.7   0.000661255   0.00004   0.00493  -0.00349  -0.00007
  33 5968705.6      1.7   0.000607238   0.00003   0.00006  -0.00004   0.00579
  35 5970943.7      1.7   0.000000001   0.00000   0.00000   0.00000  -0.00001

After calculation of SOC in the basis of all calculated ROCIS roots, the program prints out the composition of the spin-orbit coupled states (if PrintLevel >2) and the corresponding absorption spectrum.

Eigenvectors of SOC calculation:
the threshold for printing is: 0.010000
        weight : Root Spin Ms
State 0:       0.00 cm**-1    0.00000 eV
    0.129027   :  0    2    2
    0.741116   :  0    2    0
    0.129027   :  0    2   -2
-------------------------------------------------------------------------------
SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------
States    Energy  Wavelength   fosc         T2         TX        TY        TZ
          (cm-1)    (nm)                  (au**2)     (au)      (au)      (au)
-------------------------------------------------------------------------------
 0  1       0.0      0.0   0.000000000   0.00000   0.00000   0.00000   0.00000
 0  2       0.8      0.0   0.000000000   0.00000   0.00000   0.00000   0.00000
 0  3       0.8      0.0   0.000000000   0.00000   0.00000   0.00000   0.00000
 0  4       1.0      0.0   0.000000000   0.00000   0.00000   0.00000   0.00000
 0  5 5729330.4      1.7   0.000080556   0.00002   0.00013   0.00009   0.00464
 0  6 5729330.4      1.7   0.000096984   0.00003   0.00415   0.00295   0.00013
 0  7 5731365.3      1.7   0.000000001   0.00000   0.00001   0.00000   0.00000
 0  8 5731365.4      1.7   0.000000000   0.00000   0.00000   0.00000   0.00001
 0  9 5733452.5      1.7   0.000058329   0.00002   0.00323   0.00227   0.00004
 0 10 5733477.2      1.7   0.000066389   0.00002   0.00003   0.00002   0.00421
 0 11 5734964.4      1.7   0.000000034   0.00000   0.00005   0.00007   0.00004
 0 12 5737151.2      1.7   0.000047769   0.00001   0.00208   0.00291   0.00000

With the aid of the orca_mapspc program it is possible to extract a .plt file from the printed spectra, which then can be used to generate a plot of the intensity vs the excitation energy. The orca_mapspc program applies Gaussian type lineshape functions to the calculated transitions with a user-defined FWHM. One has to provide some information for the program such as the name of the output file, the type of spectrum you wish to plot, the energy range and the like. It is invoked in the command line and the parameters are given as arguments:

orca_mapspc FeIICl4.out socabs -eV -w1 -n3000 -x0710 -x1740

The first argument has to be the output file of your calculation followed by the type of spectrum that should be plotted. In the case of transition metal L-edges it is an absorption spectrum after the SOC correction. The arguments “-eV” (use electron Volt as energy unit), “-w1” (FWHM \(=\) 1eV), “-n3000” (use 3000 grid points), “-x0710” and “-x1740” (energy range: 710 to 740 eV) have to be adapted to the specific calculation. As a result, one obtains a .plt and a .stk file. The .plt file contains five columns. In the first column one finds the energy and in the second the total intensity. Columns three to five contain the x-,y- and z-components of the transition moment. Note, that the distribution of the transition moment among its spatial components depends on the orientation of your molecular axis system. The .stk file contains a list of all transitions with their respective transition energy and intensity. A more detailed description of the orca_mapspc program and its usage can be found in chapter orca_mapspc.

../../_images/711.svg

Fig. 7.31 Comparison of the experimentally observed (black) and calculated ROCIS (red) Fe L-edge of [FeCl\(_4\)]\(^{2-}\). The red bars highlight the contribution of individual states to the total spectrum. The calculation was performed using the TZVP basis set.

For many transition metal compounds the description of the electronic ground and excited states by Hartree-Fock theory and CIS is of rather poor quality. Especially covalency and relative spin state energetics are not reproduced correctly. This in turn might lead to wrong intensity distributions in the calculated L-edge spectra. In the majority of these cases the quality of the description and hence the predicted L-edge spectra can be significantly improved with the DFT/ROCIS method[727]. It features the usage of a restricted open-shell Kohn-Sham matrix as reference and also uses the DFT orbitals for setting up the excited configuration state functions in the CI expansion. The two electron integrals that include the DFT orbitals are scaled according to their nature and their position in the CI matrix by the parameters \(c_{1}\), \(c_{2}\) and \(c_{3}\). They all lie in the interval [0;1]. Parameters \(c_{1}\) and \(c_{2}\) scale coulomb- and exchange- like terms in the diagonal part of the CI matrix, whereas \(c_{3}\) reduces the size of all off-diagonal elements of the CI matrix. For example:

(7.238)\[\begin{split}\begin{array}{l} H_{ia,ia}^{\text{DFT/ROCIS} } =F_{aa}^{C\left( \text{KS} \right)} -F_{ii}^{C\left( \text{KS} \right)} -c_{1} \left({ ii\vert aa} \right)+2c_{2} \left({ ia\vert ia} \right) \\ H_{ia,jb}^{\text{DFT/ROCIS} } =c_{3} \left\{{ \delta_{ij} F_{ab}^{C\left( \text{KS} \right)} -\delta_{ab} F_{ji}^{C\left( \text{KS} \right)} -\left({ ij\vert ab} \right)+2\left({ ia\vert jb} \right)} \right\} \end{array} \end{split}\]

The three default parameters \(c_{1} = 0.18\), \(c_{2} = 0.20\) and \(c_{3} = 0.40\) have been optimized for a test set of molecules and their excited states on a B3LYP/def2-TZVP(-f) level of theory but can be freely chosen[727]. It is most likely that for a different combination of test molecules, functional and basis set, a different set of parameters gives better results. Since the parameters are chosen with regard of a good “balance” between orbital energies, Coulomb and exchange integrals, a new set of parameters should at least crudely resemble their relative proportions.

! B3LYP def2-TZVP(-f) TightSCF

%Basis
  AuxC "def2/J" 
end

%ROCIS
  NRoots 20
  DoRI true
  SOC true
  DoHigherMult true
  PrintLevel 3
  OrbWin = 5,7,50,60
  DoDFTCIS true   #switches on the DFT/ROCIS method
  DFTCIS_c = 0.18, 0.20, 0.40 #Array input of the three parameters
end
../../_images/712.svg

Fig. 7.32 Comparison of the experimentally observed (black) and calculated (red) Ti L-edge of [Cp\(_2\)TiCl\(_2\)]. The red bars highlight the contribution of the individual states to the total spectrum. The pure ROCIS method (left) predicts a wrong L\(_3\)-L\(_2\) intensity ratio and strongly overestimates the splitting of the satellite features to the main bands. Better results are obtained with the DFT/ROCIS method (right).

7.31.3. Natural Transition Orbitals/ Natural Difference Orbitals

Likewise to CIS and TD-DFT (section Natural Transition Orbitals) The nature of the calculated excited states in ROCIS and DFT/ROCIS can be analyzed by using the Natural Transition Orbitals (NTO) or Natural Difference Orbitals (NDO) machineries.[688] Note that:

  • The NTO analysis is based on the transition density between ground and excited states. Hence is valid for singly excited states and for states of the same multiplicity.

  • The NDO analysis on the otherhand is somewhat more flexible in this respect as it is based on the difference density between ground and excited states.

  • Presently, only one analysis (NTO or NDO) can be performed at a time while when both flags are on the NTO analysis switches off.

An example is given below for [FeCl\(_4\)]\(^{2-}\):

!B3LYP def2-TZVP Conv TightSCF LargePrint PAL4

%Basis
  AuxC "def2/J"
end

%ROCIS
  NRoots 40
  PrintLevel 3
  MaxCore 4000
  MaxDim 360
  SOC true
  DoRI true
  DoNTO true
  DoNDO true
  NDOThresh/NTOThresh 1e-4
  NDOStates/NTOStates= 1,2,3,4,5,6,7,8,9,10,13,14,15
  DoLowerMult true
  DoHigherMult true
  DoDFTCIS true
  DFTCIS_c = 0.18, 0.20, 0.40
  OrbWin = 6,8,0,2000
end


* xyz -2 5
Fe  -17.84299991694815     -0.53096694321123      6.09104775508499
Cl  -19.84288422845700      0.31089495619796      7.04101319789001
Cl  -17.84298666758073      0.11868125024595      3.81067954087770
Cl  -17.84301352218429     -2.87052442818457      6.45826391412877
Cl  -15.84311566482982      0.31091516495189      7.04099559201853
*

Then the respective NTO and NDO analysis for state 15 is given below:

------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE   14
------------------------------------------

done
Solving eigenvalue problem for the Occupied space  ... done
Solving eigenvalue problem for the Acceptor space   ... done
Natural Transition Orbitals were saved in nto.14.nto
Threshold for printing occupation numbers 1.0e-04

E=  25.447756 au    692.469 eV  5585137.0 cm**-1
49[0] ->  46[1]  : n=  0.39056909
48[0] ->  47[1]  : n=  0.08619374
47[0] ->  48[1]  : n=  0.00441125
-------------------------------------------------
NATURAL DIFFERENCE ORBITALS FOR STATE   14
-----------------------------------------------

done
Solving eigenvalue problem for the Occupied space  ... done
Solving eigenvalue problem for the Acceptor space   ... done
Natural Difference Orbitals were saved in ndo.14.ndo
Threshold for printing occupation numbers 1.0e-04

E=  25.447756 au    692.469 eV  5585137.0 cm**-1
49[0] ->  46[1]  : n=  0.81173217
48[0] ->  47[1]  : n=  0.17903699
47[0] ->  48[1]  : n=  0.01165859
46[0] ->  49[1]  : n=  0.00922738
45[0] ->  50[1]  : n=  0.00112567

For closed shell cases the orbitals are save in similar way to TDDFT and CIS (section Natural Transition Orbitals). In the case of open shell cases for convenience donor orbitals are saved with orbital operator 0 while acceptor orbitals with orbital operator 1. This needs to be specified in the orca_plot program and should not be confused with the spin-up and spin-down orbitals in the UHF and UKS cases.

In practice one can use this machinery to analyze for example the relativistically corrected states located at 705.5 eV (when shifted with respect to experiment). It can be seen that these states contain for example significant contributions from state 14. NTO or NDO analysis then shows that this state is dominated by the spin conserving DOMO-SOMO \(2p_z-3d_{yz}\) single electron excitation.

../../_images/ROCIS_NTO.svg

Fig. 7.33 DFT/ROCIS calculated L3 XAS spectrum of [Fe(Cl) \(_4\)]\(^{2-}\) together with NDO analysis for state 14. Constant broadening \(0.5\) eV and isovalue for the orbital plots \(0.03\) a.u. is used throughout

7.31.4. Resonant Inelastic Scattering Spectroscopy

7.31.4.1. General

Starting from ORCA version 4.0 ROCIS module can be used to calculate RIXS spectra

The present implementation is directly based on the Kramers Heisenerg Dirac (KDH) expression formula for near resonant and resonant conditions

\[\left|{ {\alpha _{\rho \lambda } }({E_{ex} },{E_{sc} }) } \right|_{Total}^2 = { \sum\limits_F { \left|{ \sum\limits_V { \frac{{\left\langle F \right|{ m_\rho }\left| V \right\rangle\left\langle V \right|{ m_\lambda }\left| I \right\rangle} }{{{E_{VI} } - { E_{ex} } - i\frac{1}{2}{\Gamma _V} }} } } \right|} ^2}\left\{{ \frac{{{\Gamma _F} }}{{{{({E_{FV} } - { E_{ex} } + { E_{sc} }) }^2} + \frac{1}{4}{\Gamma _F}^2} }} \right\}\]
\[\left|{ {\alpha _{\rho \lambda } }({E_{ex} },{E_{sc} },V) } \right|_{resonant}^2 = \sum\limits_F { {{\left|{ \left\langle F \right|{ m_\rho }\left| V \right\rangle} \right|}^2}{{\left|{ \left\langle V \right|{ m_\lambda }\left| I \right\rangle} \right|}^2} } f({E_{VI} },{E_{FV} },{E_{ex} },{E_{sc} },{\Gamma _V},{\Gamma _F})\]
\[\left|{ {\alpha _{\rho \lambda } }({E_{VI} },{E_{sc} }) } \right|_{Direct}^2 = \sum\limits_V { \left|{ {\alpha _{\rho \lambda } }({E_{VI} },{E_{sc} },V) } \right|_{resonant}^2}\]

The resonance scattering cross section for total and direct cases, averaged over all orientations of the molecule and integrated over all directions and polarizations of scattered radiation is given in equations:

\[\sigma _{_{RXES} }^{Total}({E_{ex} },{E_{sc} }) = \frac{{8\pi E_{sc}^3{E_{ex} }} }{{9{c^4} }}\sum\limits_{\rho ,\lambda = x,y,z} { \left|{ {\alpha _{\rho \lambda } }({E_{ex} },{E_{sc} }) } \right|_{Total}^2}\]
\[\sigma _{_{RXES} }^{Direct}({E_{ex} },{E_{sc} }) = \frac{{8\pi E_{sc}^3{E_{ex} }} }{{9{c^4} }}\sum\limits_{\rho ,\lambda = x,y,z} { \left|{ {\alpha _{\rho \lambda } }({E_{ex} },{E_{sc} }) } \right|_{Direct}^2}\]

Interference effects can be then derived in a straightforward way from equation:

\[\sigma _{RXES}^{interference}(E_{ex}^{},E_{sc}^{}) = \sigma _{RXES}^{Total}(E_{ex}^{},E_{sc}^{}) - \sigma _{RXES}^{Direct}(E_{ex}^{},E_{sc}^{})\]

In order to access RIXS spectroscopy in the ROCIS module one needs in addition to specify a 2nd donor space. This is specified by defining an OrbWin array with 6 elements: The first four elements define the ranges of the two donor spaces while the last two elements the respective acceptor space range.

OrbWin = 0,0,2,4,45,60

An important difference with respect to the conventional ROCIS or DFT/ROCIS calculations is the fact that two donor spaces of very different energy ranges are involved (e.g. K-edge, L-edge) which requires to restrict somewhat the acceptor space and saturate it with as many states as possible.

The main calling commands in order to perform a RIXS calculation within both ROCIS and CASSCF blocks are the following:

  • RIXS true. Similar to absorption spectroscopy, this requests the RIXS calculation to be performed based on the calculated non-relativistic ground state multiplicity States

  • RIXSSOC true. By turning-on this flag the RIXS is calculated by taking in account the relativistically corrected Ms States.

  • Elastic true. This flag indicates whether the resonant condition in which the initial and Final states coincide should be taken into account. Note that the intensity of this spectral feature might be overestimated as presently the non resonant terms are not treated

The respective ROCIS input reads then as follows:

!B3LYP def2-TZVP  SlowConv

%Basis
  AuxC "def2/J"
end

%ROCIS
  NRoots 200
  PrintLevel 3
  MaxCore 4000
  DoRI true
  DoHigherMult true
  SOC true
  RIXS true    # Request RIXS calculation (NoSOC)
  RIXSSOC true # Request RIXS calculation (with SOC)
  Elastic true # Request RIXS calculation (Elastic)
  DoDFTCIS true
  DFTCIS_c =0.18,0.20,0.40
  OrbWin = 2,4,25,33,0,100
end
* xyzfile 2 2 test.xyz

When running the calculation one can monitor if the requested NRoots were sufficient enough to select the states dominated by both the donor orbital spaces

--------------------------------------------------------------------------------
ROOT    Mult      Excitation energy[Eh]           [cm-1]          [eV]
--------------------------------------------------------------------------------
0       2            0.00000000                      0.00          0.000
1       2            0.06611737                  14511.08          1.799
2       2            0.07728471                  16962.03          2.103
3       2            0.07732428                  16970.72          2.104
...
84       2            33.75471831                7408304.35        918.513
85       2            33.77073325                7411819.22        918.948
86       2            33.77076955                7411827.19        918.949
87       4            34.06882971                7477243.83        927.060
88       2            34.07021441                7477547.74        927.098
...

If that is not the case the respective RIXS calculations will not be performed and a Warning Message will be generated:

Making the RIXS files ...
WARNING!: Flag for RIXS property calculation was identified but
there is zero number of Intermediate  and/or Final states:
No Cross-Section properties will be evaluated ...Skipping this part
TIP: Increase the number of NRoots and/or decrease or increase 
the acceptor orbital space
...Done

A successful run on the other hand will generate the following messages for RIXS and RIXSSOC calculations.

----------------------------------------------------------------------------------
ROCIS RIXS SPECTRUM                             
----------------------------------------------------------------------------------

Making the RIXS data files for Inelastic and Elastic Scattering
Ground State:                  1
Intermediate States:           21
Final States:                  59
The RIXS cross section will be generated from:          
60 Ground-Final State Pairs and   21 Intermediate States/Pair
Calculating Intensities...
10% done
20% done
30% done
40% done
50% done
60% done
70% done
80% done
90% done
100% done
Storing the files...All Done
----------------------------------------------------------------------------------
----------------------------------------------------------------------------------
ROCIS RIXSSOC SPECTRUM                             
----------------------------------------------------------------------------------

Making the RIXS-SOC data files for Inelastic and Elastic Scattering
Ms States:                  2
Intermediate States:        78
Final States:               214
The RIXS cross section will be generated from:          
432 Ground-Final State Pairs and   78 Intermediate States/Pair

Calculating Intensities...
10% done
20% done
30% done
40% done
50% done
60% done
70% done
80% done
90% done
100% done

Storing the files...All Done
----------------------------------------------------------------------------------

In both cases the number of involved Initial, Final and Intermediate states is specified explicitly.

For example in the case of RIXSSOC 2 Ms Ground states, 78 Intermediate states and 214 Final states are involved. Then the RIXS cross section for elastic and inelastic scattering will be generated by 432 (2*(2+214)) Ground-Final State-Pairs and 78 Intermediate States per Ground-Final state pair.

7.31.4.2. Processing the spectra with orca_mapspc

By calling orca_mapspc with the following keywords:

orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4
	-l -n125 -m125 -dx20 -eaxis1

The program will process the test.el_inel.rocis.rixssoc file with the following parameters:

Energy range along x : 871-876 eV

Energy range along y: -1-34 eV

-l indicates Lorentzian broadening

Width along x (gamma): 0.4 eV

Width along y (gamma): 0.4 eV

Points along x: 125

Points along y:125

Shift to be applied along Incident energy/Emission axis: 20 eV

The y axis will be Energy Transfer axis. If -eaxis2 is the y axis will be then Emission Energy axis

All this information is printed during the data processing:

Mode is RIXS
Using Lorentzian shape
Cannot read the paras.inp file ... 
taking the line width parameter from the command line 
Cannot read the udex.inp file ... 
taking the excitation energy ranges from the command line 
Cannot read the udem.inp file ... 
taking the emission energy ranges from the command line 
Cannot read the gfsp.inp file ... 
No Ground-Final State Pairs will be evaluated 
---------------------------------------------------------------------------------
PLOTTING RIXS SPECTRA
---------------------------------------------------------------------------------
Input File : test.el_inel.rocis.rixssoc
Incident Energy Excitation axis :   871.000 ...   876.000 eV  125 points
Energy transfer axis            :    -1.000 ...     4.000 eV  125 points
Incident Energy Shift         :    20.000 eV
Lorenzian Linewidth along Incident Axis                   :     0.400 eV
Lorenzian Linewidth along Energy Transfer/Emission Axis   :     0.400 eV
y axis  :     1 -> Energy transfer 
Number of user defined cuts at constant Excitation Energy axis:    0 
Number of user defined cuts at constant Emission/Energy Transfer Energy axis  : 0 


Making checks...Done

Proccessing data...
10% done
20% done
...
100% done

RIXS-plotting done
Incident Energy range:            845.800 ...   869.249
Emission/Energy-transfer range:     0.000 ...     4.853

Now storing the 2D file...
Done

Making the Integrated spectra along Energy Transfer/Emission axis... Done

Making the Integrated spectra along Incident axis... Done

All Done
---------------------------------------------------------------------------------

Successful run will generate the following files: The RIXS planes of the Total, Direct and Interference RIXS intensity as indicated in the above equations:

test.el_inel.rocis.rixssoc.total_rixs.dat
test.el_inel.rocis.rixssoc.direct_rixs.dat
test.el_inel.rocis.rixssoc.interference_rixs.dat

In addition one obtains the integrated spectra at constant Incident energies (CIE):

test.el_inel.rocis.rixssoc.dw.dat

as well as at constant Emission/Energy Transfer energies (CEE/CET):

test.el_inel.rocis.rixssoc.wex.dat
../../_images/ROCIS_RIXS.svg

Fig. 7.34 DFT/ROCIS calculated RIXS planes for \({[Cu{(N{H_3})_4}]^{2 - } }\). Left: Total RIXS Intensity, Middle: Direct RIXS intensity and Right: Interference RIXS intensity. Lorentzian lineshape broadening with constant widths along Incident and Energy Transfer axis (0.5 and 0.2 eV respectively) were used throughout.

7.31.4.3. Generating Cuts

Cuts along x and y axis can be generated with two ways:

1) At first, this action can be performed by adding the following keywords: uex and udw accounting for generating cuts at constant Incident Energies (CIE) and at constant Emission (CEE)/or at constant Energy Transfer (CET) respectively, together with the desired number of cuts.

2) Alternatively, the energies of the desired cuts can be specified as lists in the files udex.inp (user defined excitations) udem.inp (user defined emissions)

For example if in udex.inp one specifies:

872.5 
874.2

and for the cuts along Energy Transfer axis one just specify -udw3

orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4
	-l -n125 -m125 -dx20 -eaxis1 -udw3

Then at the end one gets:

Making the specified  cuts (2) at constant Excitation Energy axis...
	Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_vs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_fs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_vs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_fs.dat  ...Done
	Done
	
	Making the specified cuts (3) at constant Emission/Energy Transfer axis...
	Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_vs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_fs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_1.50.xas_vs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_1.50.xas_fs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_4.00.xas_vs.dat  ...Done
	Writing file: test.el_inel.rocis.rixssoc_4.00.xas_fs.dat  ...Done
	Done
	All Done
	---------------------------------------------------------------------------------

The files *_rxes_fs.dat are RXES spectra containing all individual contributions from all Final states together with the Direct, the Total and the Interference contributions at the given constant Incident Energy.

Similarly, the *_rxes_vs.dat are RXES spectra containing individual contributions of the Intermediate states, together with the Direct the Total and the Interference contributions at the given constant Incident Energy

Likewise, the respective *_xas_fs.dat and *_xas_vs.dat are XAS type spectra with individual contributions at a given constant Emission or Energy transfer Energy

These files are Energy vs Intensity files and read like:

1) for *fs.dat

X     S-  1(  0- 0)      S-  2(  0- 1)       DIRECT       TOT       INTERFERENCE

2) for *vs.dat

X     S-  1(  45)        S-  2(  47)         DIRECT       TOT       INTERFERENCE

In the first case S -1(0-0) represents the individual contribution of a given Ground-Final state pair. The numbering follows the numbering of the output file e.g.:

Eigenvalues:     cm-1         eV      Boltzmann populations at T =  300.000 K
	0:          0.0000     0.0000         3.44e-01
	1:          8.3818     0.0010         3.31e-01

Hence, in this case S -1 represents the elastic scattering intensity.

In the second case S -1(45) represents the individual contribution of a given Intermediate state.

44:      66918.6071     8.2968         1.43e-140
45:    6996678.8061   867.4775         0.00e+00
46:    6996693.0276   867.4793         0.00e+00

In this case S -1 represents the intensity contribution of the first Intermediate state.

Starting from ORCA 4.2 in every RIXS requested calculation the Off resonant XES spectrum is automatically generated in every RIXS requested calculation.

----------------------------------------------------------------------------------
ROCIS RIXS SPECTRUM                             
----------------------------------------------------------------------------------

Making the RIXS data files for Inelastic and Elastic Scattering
Ground State:                  1
Intermediate States:           28
Final States:                  588
The RIXS cross section will be generated from:          
589 Ground-Final State Pairs and   28 Intermediate States/Pair
The Off-Resonance XES spectrum will be printed

Calculating Intensities...
10% done
20% done
30% done
40% done
50% done
60% done
70% done
80% done
90% done
100% done

Printing the XES spectrum and Storing the files...
-------------------------------------------------------------------------------------
X-RAY EMISSION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------------
Transition          Energy           INT             TX        TY        TZ 
(eV)           (fosc)          (au)      (au)      (au)
-------------------------------------------------------------------------------------
1  589 ->    0      6403.377     0.000000000721     0.00000   0.00000   0.00000
2  590 ->    0      6403.380     0.000000000083    -0.00000   0.00000   0.00000
3  591 ->    0      6403.685     0.000873238810     0.00236   0.00000   0.00000
4  592 ->    0      6404.766     0.000000000154     0.00000   0.00000   0.00000
5  593 ->    0      6408.288     0.000000006850    -0.00001   0.00000   0.00000
6  594 ->    0      6408.295     0.000034710300    -0.00047   0.00000   0.00000
...
16490  614 ->  588      6387.989     0.000000000000     0.00000   0.00000   0.00000
16491  615 ->  588      6388.222     0.000000000000     0.00000   0.00000   0.00000
16492  616 ->  588      6388.881     0.000000000000     0.00000   0.00000   0.00000
All Done
----------------------------------------------------------------------------------

Hence also the myfile-rixs.out file can also be processed with the orca_mapspc to generate the respective XES spectra:

orca_mapspc myfile_rixs.out XES/XESSOC -x06000 -x16500 -w2.0 -eV -n10000

7.31.5. Core PNO-ROCIS, PNO-ROCIS/DFT

It has been shown recently[546] that it is possible to combine the powerful machinery of the PNOs with the ROCIS and ROCIS/DFT methods to formulate the core PNO-ROCIS and PNO-ROCIS/DFT methods. The usage of PNOs here is somewhat unconventional since they are not used to treat electron correlation effects in a state specific manner. Rather, the PNOs are used to identify the relevant part of the virtual space that can be reached by excitation out of local core orbitals. This subspace of the virtual space is local, thus leading to a linear scaling, state universal method.

The PNO-ROCIS calculations can be requested with the following keywords:

...
DoPNO true #Flag to call the PNO truncation
TCutPNO 1e-11#Threshold to cutout the PNO populations
XASElems 0 #Number of the involved element to the calculated core XAS calculation
OrbWin = 0,0,0,2000
...

As has been shown in reference[546] a universal TCutPNO 1e-11 threshhold can be defined for all edges provided that the PNOs are constructed by taking into account all the availiable core orbitals in the systems. For example in the case of a 1st row transition metal this will be the 9 1s, 2s, 2p, 3s and 3p MOs. These orbitals will be identified automatically by the program provided that the element or the elements for which the XAS calculation will be performed are specified within the XASElems keyword. In the following example these correspond to Core MOs 36-44. Note that the CoreMOs list should not be confused with the OrbWin which is used to specify the excitation space that will be actually used in the actual calculation.

===============================================
Core PNO/ROCIS truncation
================================================

------------------------------------------------
Calculating Integrals...
------------------------------------------------

...

------------------------------------------------
Calculating Guess Amplitudes and Densities...
------------------------------------------------

----------------------------------------------------------------
The densities will be generated from the Detected Core MOs:
----------------------------------------------------------------

MO= 36, E= -261.246087 Eh
MO= 37, E=  -31.777896 Eh
MO= 38, E=  -27.263122 Eh
MO= 39, E=  -27.263122 Eh
MO= 40, E=  -27.263122 Eh
MO= 41, E=   -3.914132 Eh
MO= 42, E=   -2.457405 Eh
MO= 43, E=   -2.457405 Eh
MO= 44, E=   -2.457405 Eh

Alternativelly one can also use the CoreMOs keyword to individual select the respective CoreMOs

...
DoPNO true #Flag to call the PNO truncation
TCutPNO 1e-11#Threshold to cutout the PNO populations
CoreMOs 0,1,6,7,8,29,30,31,32  #The core MOs for the selected element 
                               #to perform the XAS calculation
OrbWin = 0,0,0,2000
...

A complete list of CoreMOs of the different atoms can be found in reference[546] The program will then proceed and generate the Core PNOs and use the TCutPNO threshold to reduce the Virtual MO space. In the following example only virtual orbitals are selected out of the total 1445 virtual MOs

TCutPNO:                              1.000e-11
Virtual orbitals before selection:   368 ... 1812 (1445 MO's)
Virtual orbitals after selection:    368 ...  447 ( 80 MO's)
PNO transformation completed in:    177.09 sec

From this point and on the programm will proceed the usual way. This will result in extraordinary computation speeding ups without loss in accuracy.

7.31.6. ROCIS Magnetic Properties

Several magnetic properies are availiable in the ROCIS method Including g-tensors (G-Matrix), zero field splittings (ZFS), hyperfine couplings (HFCs) and electric field gradients (EFGs).

The g-tensors as well as the zfs are calculated on the basis of the Effective Hamiltonian as well in the sum over states (SOS) framework. HFCs are calculated in the SOS framework while EFGs are calculated as expectation values. Please consult also the respective discussion in the MRCI chapter (section The Multireference Correlation Module)

...
DoHeff true    # Requests calculation of G-tenosrs and ZFS 
               # in the effective Hamiltonian framework
DoEPR true     # Requests calculation of G-tenosrs, ZFS and HFCs
               # in the Sum over states (SOS) framework
AtensorNuc 0   # Nuclei to account for the HFCs calculation
NAtensors 1    # How many Nuclei are included in the HFCs calculation
ATensor 0      # Nucleus to calculate HFCs and EFGs
NDoubGtensor 1 # Kramers doublets to account for the g tensor calculations
...

This will enter the calculation in the ROCIS Spin Hamiltonian section

--------------------------------------------------------
ROCIS SPIN HAMILTONIAN PROPERTIES           
--------------------------------------------------------

7.31.7. Keyword List

%rocis
#-----------------------------------------------------------
# GENERAL KEYWORDS
#-----------------------------------------------------------
NRoots 3          # The number of desired roots
MaxDim 5          # Davidson expansion space = MaxDim * NRoots
MaxIter 35        # Maximum CI Iterations
NGuessMat 512     # The dimension of the guess matrix
ETol 1e-6         # Energy convergence tolerance
RTol 1e-6         # Residual Convergence tolerance
MaxCore 2000      # Maximum memory used during the calculation in MB
EWin= -5,5,-5,5   # Energy Window that defines orbital excitation space
OrbWin=6,8,0,2000 # Orbital Window that defines orbital excitation space
                  # (overrides EWin)
DoRI false        # Switch for the RI approximation
DoLoc false       # Switch for localization of Donor orbital space
LocMet PipekMezey # chooses the localization method:
                  # PipekMezey or FosterBoys.
                  # Abbreviations "PM" and "FB"
                  # are equivalent to full names.
SOC false         # Switch for inclusion of SOC

TEMPERATURE 10    # The fictive temperature for the
                  # SOC corrected spectra
DoDFTCIS false    # Switch for the DFT/ROCIS method
DFTCIS_C = 0.18, 0.20, 0.40 #Array Input of the
                  # three DFT/ROCIS parameters

#-----------------------------------------------------------
# FLAGS FOR EXCITATION SPACES
#-----------------------------------------------------------
Do_is true          # Include DOMO->SOMO excitations
Do_sa true          # Include SOMO->Virtual excitation
Do_ia true          # Include DOMO->Virtual excitations
Do_ista true        # Include DOMO->SOMO excitations
                    # coupled to SOMO->Virtual
                    # excitations with s not equal t
Do_isa true         # Include DOMO->SOMO excitations
                    # coupled to SOMO->Virtual
                    # excitations with s = t
DoLowerMult false   # Switch for excitation with S’=S-1
Do_LM_is true       # Include DOMO->SOMO excitations
                    # with S’=S-1
Do_LM_sa true       # Include SOMO->Virtual excitations
                    # with S’=S-1
Do_LM_ia true       # Include DOMO->Virtual excitations
                    # with S’=S-1
Do_LM_ss true       # Include SOMO->SOMO excitations
                    # with S’=S-1
DoHigherMult false  # Switch for DOMO->Virtual
                    # excitations with S’=S+1


#-----------------------------------------------------------
OUTPUT KEYWORDS
#-----------------------------------------------------------
PrintLevel 3                # Controls the amount of output
                            # produced during the calculation
RIXS false                  # Perform a RIXS calculation
RIXSSOC false               # Perform a RIXS calculation on the basis
                            # of relativistically corrected states
Elastic false               # Include the elastic line in the generation
                            # of the RIXS or RIXSSOC spectra
PlotDiffDens = 1,2          # Array input for plotting
                            # difference densities of CI roots
                            # 1 and 2 to the ground state.
PlotSOCDiffDens=1,2         # Array input for plotting
                            # difference densities of SOC
                            # states 1 and 2 to the ground state
DoNTO false                 # Request Natural Transition Orbital Analysis
DoNDO false                 # Request Natural Difference Orbital Analysis
                            # (if true it switches off the NTO analysis)

NDOThresh 1e-4              # Threshold for printing occupation numbers
NTOThresh 1e-4              # Threshold for printing occupation numbers
NDOStates = 1,2             # Array input for states to be taken into account
NTOStates = 1,2             # Array input for states to be taken into account
TPrint 0.01                 # Threshold for contributions to CI
                            # and SOC states to be printed
DoPNO false                 # Performs the calculation in the PNO-ROCIS framework

DoCD true                   # Request circular dichroism calculation
DoDipoleLength true         # Request the use of electric moments in a length formulation
DoDipoleVelocity true       # Request the use of electric moments in a velocity formulation
DoHigherMoments true        # Request the calculation of electric quadrupole and magnetic
                            # dipole moments contributions
DoFullSemiclassical true    # Request the calculation of complete semiclassical
                            # multipolar moments
DecomposeFoscLength true    # Request the decomposition of the oscillator strengths
                            # in a multipolar expansion under a length formulation
DecomposeFoscVelocity true  # Request the decomposition of the oscillator strengths
                            # in a multipolar expansion under a velocity formulation