Publications Related to ORCA¶
The generic references for ORCA are:
Frank Neese. The orca program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2(1):73–78, 2012. doi:http://doi.wiley.com/10.1002/wcms.81.
Frank Neese. Software update: the orca program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 8(1):e1327, 2018. doi:http://doi.wiley.com/10.1002/wcms.1327.
Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger. The orca quantum chemistry program package. J. Chem. Phys., 152(22):224108, 2020. doi:https://aip.scitation.org/doi/10.1063/5.0004608.
Please do not only cite the above generic reference, but also cite in addition the original papers that report the development and implementation of the methods you have used in your studies! The following publications describe functionality implemented in . We would highly appreciate if you cite them when you use the program.
Method development¶
2017¶
Achintya Kumar Dutta, Frank Neese, and Róbert Izsák. A simple scheme for calculating approximate transition moments within the equation of motion expectation value formalism. J. Chem. Phys., 146(21):214111, 2017.
Achintya Kumar Dutta, Marcel Nooijen, Frank Neese, and Róbert Izsák. Automatic active space selection for the similarity transformed equations of motion coupled cluster method. J. Chem. Phys., 146(7):074103, 2017.
Stefan Grimme, Christoph Bannwarth, Sebastian Dohm, Andreas Hansen, Jana Pisarek, Philipp Pracht, Jakob Seibert, and Frank Neese. Fully automated quantum-chemistry-based computation of Spin–Spin-Coupled nuclear magnetic resonance spectra. Angew. Chem. Int. Ed., 56(46):14763–14769, 2017. doi:10.1002/anie.201708266.
Yang Guo, Kantharuban Sivalingam, Edward F. Valeev, and Frank Neese. Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12). J. Chem. Phys., 147(6):064110, 08 2017. doi:10.1063/1.4996560.
L .M. J. Huntington, M. Krupička, F. Neese, and R. Izsák. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted hartree-fock reference for applications to high-spin open-shell systems. J. Chem. Phys., 147:174104, 2017.
Jaroslaw Kalinowski, Frank Wennmohs, and Frank Neese. Arbitrary angular momentum electron repulsion integrals with graphical processing units: application to the resolution of identity hartree–fock method. J. Chem. Theory Comput., 13(7):3160–3170, 2017.
M. Krupička, K. Sivalingam, L. Huntington, A. A. Auer, and F. Neese. A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. J. Comput. Chem., 38:1853, 2017.
Dimitrios Maganas, Serena DeBeer, and Frank Neese. A restricted open configuration interaction with singles method to calculate valence-to-core resonant x-ray emission spectra: a case study. Inorg. Chem., 56(19):11819–11836, 2017.
Sebastian Mai, Felix Plasser, Mathias Pabst, Frank Neese, Andreas Köhn, and Leticia González. Surface hopping dynamics including intersystem crossing using the algebraic diagrammatic construction method. J. Chem. Phys., 147(18):184109, 2017.
Shubhrodeep Pathak, Lucas Lang, and Frank Neese. A dynamic correlation dressed complete active space method: Theory, implementation, and preliminary applications. J. Chem. Phys., 147:234109, 2017.
Fabijan Pavošević, Chong Peng, Peter Pinski, Christoph Riplinger, Frank Neese, and Edward F Valeev. Sparsemaps—a systematic infrastructure for reduced scaling electronic structure methods. v. linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. J. Chem. Phys., 146(17):174108, 2017.
M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, and F. Neese. J. Chem. Phys., 146:164105, 2017.
Manuel Sparta, Marius Retegan, Peter Pinski, Christoph Riplinger, Ute Becker, and Frank Neese. Multilevel approaches within the local pair natural orbital framework. J. Chem. Theory Comput., 13(7):3198–3207, 07 2017. URL: https://pubs.acs.org/doi/10.1021/acs.jctc.7b00260, arXiv:28590754, doi:10.1021/acs.jctc.7b00260.
Georgi L. Stoychev, Alexander A. Auer, and Frank Neese. Automatic generation of auxiliary basis sets. J. Chem. Theory Comput., 13(2):554, 2017. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b01041, doi:https://doi.org/10.1021/acs.jctc.6b01041.
Libor Veis, Andrej Antalík, Jiri Brabec, Frank Neese, Ors Legeza, and Jiri Pittner. Coupled cluster method with single and double excitations tailored by matrix product state wave functions. J. Phys. Chem. Lett., 7(20):4072–4078, 2016.
2018¶
G. Bistoni, I. Polyak, M. Sparta, W. Thiel, and F. Neese. Toward accurate QM/MM reaction barriers with large QM regions using domain based pair natural orbital coupled cluster theory. J. Chem. Theory Comput., 14(7):3524–3531, 2018. URL: <Go to ISI>://WOS:000438654500015, doi:https://doi.org/10.1021/acs.jctc.8b00348.
J. Brabec, J. Lang, M. Saitow, J. Pittner, F. Neese, and O. Demel. Domain-based local pair natural orbital version of mukherjee's state-specific coupled cluster method. J. Chem. Theory Comput., 14(3):1370–1382, 2018. URL: <Go to ISI>://WOS:000427661400021, doi:10.1021/acs.jctc.7b01184.
Bernardo de Souza, Frank Neese, and Robert Izsak. On the theoretical prediction of fluorescence rates from first principles using the path integral approach. J. Chem. Phys., 148(3):034104, 2018. URL: http://aip.scitation.org/doi/abs/10.1063/1.5010895 (visited on 2018-01-31), doi:10.1063/1.5010895.
A. K. Dutta, F. Neese, and R. Izsak. Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation. Mol. Phys., 116(11):1428–1434, 2018. URL: <Go to ISI>://WOS:000431017000002, doi:10.1080/00268976.2017.1416201.
A. K. Dutta, M. Nooijen, F. Neese, and R. Izsak. Exploring the accuracy of a low scaling similarity transformed equation of motion method for vertical excitation energies. J. Chem. Theory Comput., 14(1):72–91, 2018. URL: <Go to ISI>://WOS:000419998300008, doi:10.1021/acs.jctc.7b00802.
A. K. Dutta, M. Saitow, C. Riplinger, F. Neese, and R. Izsak. A nearlinear scaling equation of motion coupled cluster method for ionized states. J. Chem. Phys., 148(24):13, 2018. URL: <Go to ISI>://WOS:000437190300049, doi:10.1063/1.5029470.
Yang Guo, Ute Becker, and Frank Neese. Comparison and combination of “direct” and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories. J. Chem. Phys., 148(12):124117, 2018. doi:10.1063/1.5021898.
Yang Guo, Christoph Riplinger, Ute Becker, Dimitrios G. Liakos, Yury Minenkov, Luigi Cavallo, and Frank Neese. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J. Chem. Phys., 148(1):011101, 2018. doi:10.1063/1.5011798.
D. Maganas, S. DeBeer, and F. Neese. Pair natural orbital restricted open-shell configuration interaction (PNO-ROCIS) approach for calculating x-ray absorption spectra of large chemical systems. J. Phys. Chem. A, 122(5):1215–1227, 2018. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jpca.7b10880, doi:https://doi.org/10.1021/acs.jpca.7b10880.
M. C. R. Melo, R. C. Bernardi, T. Rudack, M. Scheurer, C. Riplinger, J. C. Phillips, J. D. C. Maia, G. B. Rocha, J. V. Ribeiro, J. E. Stone, F. Neese, K. Schulten, and Z. Luthey-Schulten. NAMD goes quantum: an integrative suite for hybrid simulations. Nat. Methods, 15(5):351–+, 2018. URL: <Go to ISI>://WOS:000431372700019, doi:10.1038/nmeth.4638.
Frank Neese. Software update: the orca program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 8(1):e1327, 2018. doi:http://doi.wiley.com/10.1002/wcms.1327.
Peter Pinski and Frank Neese. Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys., 148:031101, 2018. doi:10.1063/1.5011204.
Masaaki Saitow and Frank Neese. Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 149:034104, 2018. doi:10.1063/1.5027114.
Avijit Sen, Bernardo de Souza, Lee M. J. Huntington, Martin Krupička, Frank Neese, and Róbert Izsák. An efficient pair natural orbital based configuration interaction scheme for the calculation of open-shell ionization potentials. J. Chem. Phys., 149(11):114108, 2018.
Georgi L Stoychev, Alexander A Auer, Róbert Izsák, and Frank Neese. Self-consistent field calculation of nuclear magnetic resonance chemical shielding constants using gauge-including atomic orbitals and approximate two-electron integrals. J. Chem. Theory Comput., 14(2):619–637, 2018. URL: http://pubs.acs.org/doi/10.1021/acs.jctc.7b01006, doi:10.1021/acs.jctc.7b01006.
Georgi L. Stoychev, Alexander A. Auer, and Frank Neese. Efficient and accurate prediction of nuclear magnetic resonance shielding tensors with double-hybrid density functional theory. J. Chem. Theory Comput., 14(9):4756–4771, 09 2018. URL: http://pubs.acs.org/doi/10.1021/acs.jctc.8b00624, doi:10.1021/acs.jctc.8b00624.
2019¶
A. Altun, F. Neese, and G. Bistoni. Open-shell variant of the london dispersion-corrected hartree-fock method hfld for the quantification and analysis of noncovalent interaction energies. J. Chem. Theory Comput., 18(4):2292–2307, 2022. doi:10.1021/acs.jctc.1c01295.
Ahmet Altun, Frank Neese, and Giovanni Bistoni. HFLD: A nonempirical london dispersion-corrected Hartree–Fock method for the quantification and analysis of noncovalent interaction energies of large molecular systems. J. Chem. Theory Comput., 15(11):5894–5907, 2019. URL: https://doi.org/10.1021/acs.jctc.9b00425, arXiv:https://doi.org/10.1021/acs.jctc.9b00425, doi:10.1021/acs.jctc.9b00425.
Bernardo de Souza, Giliandro Farias, Frank Neese, and Robert Izsak. Efficient simulation of overtones and combination bands in Resonant Raman spectra. J. Chem. Phys., 150(21):accepted – still waiting for publication, 2019. URL: https://aip.scitation.org/doi/10.1063/1.5099247, doi:10.1063/1.5099247.
A. K. Dutta, M. Saitow, B. Demoulin, F. Neese, and R. Izsak. A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states. J. Chem. Phys., 2019. URL: <Go to ISI>://WOS:000466698700028, doi:10.1063/1.5089637.
M. Garcia-Ratés and F. Neese. Efficient implementation of the analytical second derivatives of hartree-fock and hybrid dft energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem., 40(20):1816–1828, 2019. URL: <Go to ISI>://WOS:000470923100002, doi:10.1002/jcc.25833.
S. Haldar, C. Riplinger, B. Demoulin, F. Neese, R. Izsak, and A. K. Dutta. Multilayer approach to the ip-eom-dlpno-ccsd method: theory, implementation, and application. J. Chem. Theory Comput., 15(4):2265–2277, 2019. URL: <Go to ISI>://WOS:000464475500015, doi:10.1021/acs.jctc.8b01263.
Benjamin Helmich-Paris. CASSCF linear response calculations for large open-shell molecules. J. Chem. Phys., 150(17):174121, 2019. URL: https://doi.org/10.1063/1.5092613, doi:10.1063/1.5092613.
Christian Kollmar, Kantharuban Sivalingam, Benjamin Helmich-Paris, Celestino Angeli, and Frank Neese. A perturbation-based super-CI approach for the orbital optimization of a CASSCF wave function. J. Comput. Chem., 40:1463–1470, 2019. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.25801, doi:10.1002/jcc.25801.
A. Kumar, F. Neese, and E. Valeev. Near-linear scaling explicitly correlated coupled cluster singles and doubles method based on an open-shell domain-based local pair natural orbitals. Abstr. Pap. Am. Chem. Soc., 2019. URL: <Go to ISI>://WOS:000525061504143.
J. Lang, J. Brabec, M. Saitow, J. Pittner, F. Neese, and O. Demel. Perturbative triples correction to domain-based local pair natural orbital variants of mukherjee's state specific coupled cluster method. Phys. Chem. Chem. Phys., 21(9):5022–5038, 2019. URL: <Go to ISI>://WOS:000461722700029, doi:10.1039/c8cp03577f.
Lucas Lang and Frank Neese. Spin-dependent properties in the framework of the dynamic correlation dressed complete active space method. J. Chem. Phys., 150:104104, 2019.
Dimitrios Maganas, Joanna K. Kowalska, Marcel Nooijen, Serena DeBeer, and Frank Neese. Comparison of multireference ab initio wavefunction methodologies for X-ray absorption edges: A case study on [Fe(II/III)Cl4]2–/1– molecules. J. Chem. Phys., 150(10):104106, 2019. URL: https://pubs.aip.org/aip/jcp/article-abstract/150/10/104106/1058894/, doi:https://doi.org/10.1063/1.5051613.
Peter Pinski and Frank Neese. Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). J. Chem. Phys., 150:164102, 2019.
M. Saitow, A. K. Dutta, and F. Neese. Accurate ionization potentials, electron affinities and electronegativities of single-walled carbon nanotubes by state-of-the-art local coupled-cluster theory. Bull. Chem. Soc. Jpn., 92(1):170–174, 2019. URL: <Go to ISI>://WOS:000455409900003, doi:10.1246/bcsj.20180254.
2020¶
A. Altun, F. Neese, and G. Bistoni. Extrapolation to the limit of a complete pair natural orbital space in local coupled-cluster calculations. J. Chem. Theory Comput., 16(10):6142–6149, 2020. URL: <Go to ISI>://WOS:000580954000015, doi:https://doi.org/10.1021/acs.jctc.0c00344.
A. A. Auer, V. A. Tran, B. Sharma, G. L. Stoychev, D. Marx, and F. Neese. A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on epr hyperfine coupling constants: vibrational perturbation theory versus ab-initio molecular dynamics. Mol. Phys., 118:16, 2020. URL: https://www.tandfonline.com/doi/full/10.1080/00268976.2020.1797916, doi:https://doi.org/10.1080/00268976.2020.1797916.
D. Datta, M. Saitow, B. Sandhofer, and F. Neese. Fe-57 mossbauer parameters from domain based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 2020. URL: <Go to ISI>://WOS:000596027300001, doi:10.1063/5.0022215.
A. Dittmer, G. L. Stoychev, D. Maganas, A. A. Auer, and F. Neese. Computation of nmr shielding constants for solids using an embedded cluster approach with dft, double-hybrid dft, and mp2. J. Chem. Theory Comput., 16(11):6950–6967, 2020. URL: <Go to ISI>://WOS:000592392800018, doi:10.1021/acs.jctc.0c00067.
M. Garcia-Ratés and F. Neese. Effect of the solute cavity on the solvation energy and its derivatives within the framework of the gaussian charge scheme. J. Comput. Chem., 41(9):922–939, 2020. URL: <Go to ISI>://WOS:000504862400001, doi:10.1002/jcc.26139.
Y. Guo, C. Riplinger, D. G. Liakos, U. Becker, M. Saitow, and F. Neese. Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory dlpno-ccsd(t-0/t). J. Chem. Phys., 2020. URL: <Go to ISI>://WOS:000519813300005, doi:10.1063/1.5127550.
Christian Kollmar, Kantharuban Sivalingam, and Frank Neese. An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. J. Chem. Phys., 152(21):214110, 06 2020. doi:10.1063/5.0010019.
A. Kumar, F. Neese, and E. F. Valeev. Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. J. Chem. Phys., 153(9):17, 2020. URL: <Go to ISI>://WOS:000570176400001, doi:10.1063/5.0012753.
Lucas Lang, Mihail Atanasov, and Frank Neese. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. J. Phys. Chem. A, 124(5):1025–1037, 02 2020. doi:10.1021/acs.jpca.9b11227.
Lucas Lang, Enrico Ravera, Giacomo Parigi, Claudio Luchinat, and Frank Neese. Solution of a puzzle: High-level quantum-chemical treatment of pseudocontact chemical shifts confirms classic semiempirical theory. J. Phys. Chem. Lett., 11(20):8735–8744, 2020.
Lucas Lang, Kantharuban Sivalingam, and Frank Neese. The combination of multipartitioning of the Hamiltonian with canonical Van Vleck perturbation theory leads to a Hermitian variant of quasidegenerate N-electron valence perturbation theory. J. Chem. Phys., 152(1):014109, 01 2020. doi:10.1063/1.5133746.
D. G. Liakos, Y. Guo, and F. Neese. Comprehensive benchmark results for the domain based local pair natural orbital coupled cluster method (dlpno-ccsd(t)) for closed- and open-shell systems. J. Phys. Chem. A, 124(1):90–100, 2020. URL: <Go to ISI>://WOS:000507151000012, doi:10.1021/acs.jpca.9b05734.
Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger. The orca quantum chemistry program package. J. Chem. Phys., 152(22):224108, 2020. doi:https://aip.scitation.org/doi/10.1063/5.0004608.
Julian D. Rolfes, Frank Neese, and Dimitrios A. Pantazis. All-electron scalar relativistic basis sets for the elements Rb–Xe. J. Comput. Chem., 41:1842–1849, 2020. doi:10.1002/jcc.26355.
Van Anh Tran and Frank Neese. Double-hybrid density functional theory for g-tensor calculations using gauge including atomic orbitals. J. Chem. Phys., 153(5):054105, 08 2020. URL: https://doi.org/10.1063/5.0013799, doi:10.1063/5.0013799.
2021¶
Vijay Gopal Chilkuri and Frank Neese. Comparison of many-particle representations for selected-CI I: A tree based approach. J. Comput. Chem., 42(14):982–1005, 2021. doi:10.1002/jcc.26518.
Vijay Gopal Chilkuri and Frank Neese. Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations. J. Chem. Theory Comput., 17(5):2868–2885, 05 2021. doi:10.1021/acs.jctc.1c00081.
M. Garcia-Ratés, U. Becker, and F. Neese. Implicit solvation in domain based pair natural orbital coupled cluster (dlpno-ccsd) theory. J. Comput. Chem., 42(27):1959–1973, 2021. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.26726, doi:10.1002/jcc.26726.
Y. Guo, W. Li, and S. Li. Improved cluster-in-molecule local correlation approach for electron correlation calculation of large systems. J. Phys. Chem. A, 118(39):8996–9004, 2014. doi:https://doi.org/10.1021/jp501976x.
Benjamin Helmich-Paris. A trust-region augmented Hessian implementation for restricted and unrestricted Hartree–Fock and Kohn–Sham methods. J. Chem. Phys., 154(16):164104, 2021. URL: https://doi.org/10.1063/5.0040798, doi:10.1063/5.0040798.
Benjamin Helmich-Paris, Bernardo de Souza, Frank Neese, and Róbert Izsák. An improved chain of spheres for exchange algorithm. J. Chem. Phys., 155(10):104109, 2021. doi:10.1063/5.0058766.
Georgi L. Stoychev, Alexander A. Auer, Jürgen Gauss, and Frank Neese. DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J. Chem. Phys., 154(16):164110, 2021. URL: https://aip.scitation.org/doi/10.1063/5.0047125, doi:10.1063/5.0047125.
Relevant applications, benchmarks and reviews¶
2017¶
Giovanni Bistoni, Alexander A. Auer, and Frank Neese. Understanding the role of dispersion in frustrated lewis pairs and classical lewis adducts: A domain-based local pair natural orbital coupled cluster study. Chem. Eur. J., 23(4):865–873, 2017.
Giovanni Bistoni, Christoph Riplinger, Yury Minenkov, Luigi Cavallo, Alexander A Auer, and Frank Neese. Treating subvalence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach. J. Chem. Theory Comput., 2017. URL: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00352, doi:https://doi.org/10.1021/acs.jctc.7b00352.
Octav Caldararu, Martin A Olsson, Christoph Riplinger, Frank Neese, and Ulf Ryde. Binding free energies in the sampl5 octa-acid host–guest challenge calculated with dft-d3 and ccsd (t). J. Comput.-Aided Mol. Des., 31(1):87–106, 2017. URL: https://link.springer.com/article/10.1007/s10822-016-9957-5, doi:https://doi.org/10.1007/s10822-016-9957-5.
Uttam Chakraborty, Serhiy Demeshko, Franc Meyer, Christophe Rebreyend, Bas de Bruin, Mihail Atanasov, Frank Neese, Bernd Mühldorf, and Robert Wolf. Electronic Structure and Magnetic Anisotropy of an Unsaturated Cyclopentadienyl Iron(I) Complex with 15 Valence Electrons. Angew. Chem. Int. Ed., 56(27):7995–7999, 06 2017. doi:10.1002/anie.201702454.
Vijay Gopal Chilkuri, Serena DeBeer, and Frank Neese. Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model. Inorg. Chem., 56(17):10418–10436, 09 2017. doi:10.1021/acs.inorgchem.7b01371.
Julie Jung, Mihail Atanasov, and Frank Neese. Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. Inorg. Chem., 56(15):8802–8816, 08 2017. doi:10.1021/acs.inorgchem.7b00642.
Adam Kubas, Johannes Noak, Annette Trunschke, Robert Schlögl, Frank Neese, and Dimitrios Maganas. A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance raman spectra of m1 movo x. Chem. Sci., 8(9):6338–6353, 2017.
Yury Minenkov, Giovanni Bistoni, Christoph Riplinger, Alexander A Auer, Frank Neese, and Luigi Cavallo. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation. Phys. Chem. Chem. Phys., 19(14):9374–9391, 2017.
Frank Neese. High-level spectroscopy, quantum chemistry, and catalysis: not just a passing fad. Angew. Chem. Int. Ed., 56(37):11003–11010, 2017.
Frank Neese. Quantum Chemistry and EPR Parameters, pages 1–22. American Cancer Society, 2017. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470034590.emrstm1505, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470034590.emrstm1505, doi:https://doi.org/10.1002/9780470034590.emrstm1505.
Kasper S Pedersen, Daniel N Woodruff, Saurabh Kumar Singh, Alain Tressaud, Etienne Durand, Mihail Atanasov, Panagiota Perlepe, Katharina Ollefs, Fabrice Wilhelm, Corine Mathonière, and others. [osf6] x-: molecular models for spin-orbit entangled phenomena. Chem. Eur. J., 23(47):11244–11248, 2017.
Saurabh Kumar Singh, Julien Eng, Mihail Atanasov, and Frank Neese. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coordin. Chem. Rev., 344:2–25, 08 2017. doi:10.1016/j.ccr.2017.03.018.
Elizaveta A Suturina, Joscha Nehrkorn, Joseph M Zadrozny, Junjie Liu, Mihail Atanasov, Thomas Weyhermüller, Dimitrios Maganas, Stephen Hill, Alexander Schnegg, Eckhard Bill, and others. Magneto-structural correlations in pseudotetrahedral forms of the [co (sph) 4] 2–complex probed by magnetometry, mcd spectroscopy, advanced epr techniques, and ab initio electronic structure calculations. Inorg. Chem., 56(5):3102–3118, 2017.
2018¶
A. Altun, F. Neese, and G. Bistoni. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein J. Org. Chem., 14:919–929, 2018. URL: <Go to ISI>://WOS:000430878300002, doi:10.3762/bjoc.14.79.
G. Bistoni, I. Polyak, M. Sparta, W. Thiel, and F. Neese. Toward accurate QM/MM reaction barriers with large QM regions using domain based pair natural orbital coupled cluster theory. J. Chem. Theory Comput., 14(7):3524–3531, 2018. URL: <Go to ISI>://WOS:000438654500015, doi:https://doi.org/10.1021/acs.jctc.8b00348.
P. C. Bunting, M. Atanasov, E. Damgaard-Moller, M. Perfetti, I. Crassee, M. Orlita, J. Overgaard, J. van Slageren, F. Neese, and J. R. Long. A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state. Science, 362(6421):1378–+, 2018. URL: <Go to ISI>://WOS:000453845000052, doi:10.1126/science.aat7319.
A. Chantzis, J. K. Kowalska, D. Maganas, S. DeBeer, and F. Neese. Ab initio wave function-based determination of element specific shifts for the efficient calculation of x-ray absorption spectra of main group elements and first row transition metals. J. Chem. Theory Comput., 14(7):3686–3702, 2018. URL: <Go to ISI>://WOS:000438654500028, doi:10.1021/acs.jctc.8b00249.
L. R. Collins, M. van Gastel, F. Neese, and A. Furstner. Enhanced electrophilicity of heterobimetallic bi-rh paddlewheel carbene complexes: A combined experimental, spectroscopic, and computational study. J. Am. Chem. Soc., 140(40):13042–13055, 2018. URL: <Go to ISI>://WOS:000447354800056, doi:10.1021/jacs.8b08384.
G. David, F. Wennmohs, F. Neese, and N. Ferre. Chemical tuning of magnetic exchange couplings using broken-symmetry density functional theory. Inorg. Chem., 57(20):12769–12776, 2018. URL: <Go to ISI>://WOS:000447680400039, doi:10.1021/acs.inorgchem.8b01970.
T. Gatzenmeier, M. Turberg, D. Yepes, Y. W. Xie, F. Neese, G. Bistoni, and B. List. Scalable and highly diastereo- and enantioselective catalytic diels-alder reaction of alpha,beta-Unsaturated methyl esters. J. Am. Chem. Soc., 140(40):12671–12676, 2018. URL: <Go to ISI>://WOS:000447354800004, doi:10.1021/jacs.8b07092.
H. C. Gottschalk, A. Poblotzki, M. A. Suhm, M. M. Al-Mogren, J. Antony, A. A. Auer, L. Baptista, D. M. Benoit, G. Bistoni, F. Bohle, R. Dahmani, D. Firaha, S. Grimme, A. Hansen, M. E. Harding, M. Hochlaf, C. Holzer, G. Jansen, W. Klopper, W. A. Kopp, L. C. Kroger, K. Leonhard, H. Mouhib, F. Neese, M. N. Pereira, I. S. Ulusoy, A. Wuttke, and R. A. Mata. The furan microsolvation blind challenge for quantum chemical methods: First steps. J. Chem. Phys., 148(1):13, 2018. URL: <Go to ISI>://WOS:000419394500013, doi:10.1063/1.5009011.
Adam Kubas, Max Verkamp, Josh Vura-Weis, Frank Neese, and Dimitrios Maganas. Restricted open-shell configuration interaction singles study on m-and l-edge x-ray absorption spectroscopy of solid chemical systems. J. Chem. Theory Comput., 14(8):4320–4334, 2018.
Q. Lu, F. Neese, and G. Bistoni. Formation of agostic structures driven by london dispersion. Angew. Chem. Int. Ed., 57(17):4760–4764, 2018. URL: <Go to ISI>://WOS:000430165700058, doi:10.1002/anie.201801531.
B. Mondal, F. Neese, E. Bill, and S. F. Ye. Electronic structure contributions of non-herne oxo-iron(v) complexes to the reactivity. J. Am. Chem. Soc., 140(30):9531–9544, 2018. URL: <Go to ISI>://WOS:000440877000033, doi:10.1021/jacs.8b04275.
D. H. Moseley, S. E. Stavretis, K. Thirunavukkuarasu, M. Ozerov, Y. Q. Cheng, L. L. Daemen, J. Ludwig, Z. G. Lu, D. Smirnov, C. M. Brown, A. Pandey, A. J. Ramirez-Cuesta, A. C. Lamb, M. Atanasov, E. Bill, F. Neese, and Z. L. Xue. Spin-phonon couplings in transition metal complexes with slow magnetic relaxation. Nature Comm., 9:11, 2018. URL: <Go to ISI>://WOS:000437101700002, doi:10.1038/s41467-018-04896-0.
C. Romelt, S. F. Ye, E. Bill, T. Weyhermuller, M. van Gastel, and F. Neese. Electronic structure and spin multiplicity of iron tetraphenylporphyrins in their reduced states as determined by a combination of resonance raman spectroscopy and quantum chemistry. Inorg. Chem., 57(4):2141–2148, 2018. URL: <Go to ISI>://WOS:000426014800048, doi:10.1021/acs.inorgchem.7b03018.
B. Scheibe, C. Pietzonka, O. Mustonen, M. Karppinen, A. J. Karttunen, M. Atanasov, F. Neese, M. Conrad, and F. Kraus. The U2F12 (2-) anion of sr U2F12. Angew. Chem. Int. Ed., 57(11):2914–2918, 2018. URL: <Go to ISI>://WOS:000426490700027, doi:10.1002/anie.201800743.
R. G. Shirazi, F. Neese, and D. A. Pantazis. Accurate spin-state energetics for aryl carbenes. J. Chem. Theory Comput., 14(9):4733–4746, 2018. URL: <Go to ISI>://WOS:000444792700020, doi:10.1021/acs.jctc.8b00587.
Saurabh Kumar Singh, Mihail Atanasov, and Frank Neese. Challenges in multireference perturbation theory for the calculations of the g-tensor of first-row transition-metal complexes. J. Chem. Theory Comput., 14(9):4662–4677, 2018.
C. Van Stappen, D. Maganas, S. DeBeer, E. Bill, and F. Neese. Investigations of the magnetic and spectroscopic properties of V(III) and V(IV) complexes. Inorg. Chem., 57(11):6421–6438, 2018. URL: <Go to ISI>://WOS:000434491700027, doi:10.1021/acs.inorgchem.8b00486.
K. Yamamoto, J. K. Li, J. A. O. Garber, J. D. Rolfes, G. B. Boursalian, J. C. Borghs, C. Genicot, J. Jacq, M. van Gastel, F. Neese, and T. Ritter. Palladium-catalysed electrophilic aromatic C-H fluorination. Nature, 554(7693):511–514, 2018. URL: <Go to ISI>://WOS:000425597400043, doi:10.1038/nature25749.
2019¶
Ahmet Altun, Frank Neese, and Giovanni Bistoni. Effect of electron correlation on intermolecular interactions: A pair natural orbitals coupled cluster based local energy decomposition study. J. Chem. Theory Comput., 15(1):215–228, 2019. URL: https://doi.org/10.1021/acs.jctc.8b00915, doi:https://doi.org/10.1021/acs.jctc.8b00915.
R. Berraud-Pache, F. Neese, G. Bistoni, and R. Izsak. Computational design of near-infrared fluorescent organic dyes using an accurate new wave function approach. J. Phys. Chem. Lett., 10(17):4822–4828, 2019. URL: <Go to ISI>://WOS:000484884300010, doi:https://doi.org/10.1021/acs.jpclett.9b02240.
H. C. Chang, Y. H. Lin, C. Werle, F. Neese, W. Z. Lee, E. Bill, and S. F. Ye. Conversion of a fleeting open-shell iron nitride into an iron nitrosyl. Angew. Chem. Int. Ed., 58(49):17589–17593, 2019. URL: <Go to ISI>://WOS:000491791300001, doi:10.1002/anie.201908689.
H. C. Chang, B. Mondal, H. Y. Fang, F. Neese, E. Bill, and S. F. Ye. Electron paramagnetic resonance signature of tetragonal low spin Iron(V)-Nitrido and -Oxo complexes derived from the electronic structure analysis of heme and non-heme archetypes. J. Am. Chem. Soc., 141(6):2421–2434, 2019. URL: <Go to ISI>://WOS:000459222100035, doi:10.1021/jacs.8b11429.
Anneke Dittmer, Róbert Izsák, Frank Neese, and Dimitrios Maganas. Accurate band gap predictions of semiconductors in the framework of the similarity transformed equation of motion coupled cluster theory. Inorg. Chem., 58(14):9303–9315, 2019. URL: https://doi.org/10.1021/acs.inorgchem.9b00994, doi:10.1021/acs.inorgchem.9b00994.
Benjamin Helmich-Paris. Benchmarks for electronically excited states with CASSCF methods. J. Chem. Theory Comput., 15(7):4170–4179, 2019. URL: https://doi.org/10.1021/acs.jctc.9b00325, doi:10.1021/acs.jctc.9b00325.
M. Keilwerth, J. Hohenberger, F. W. Heinemann, J. Sutter, A. Scheurer, H. Y. Fang, E. Bill, F. Neese, S. F. Ye, and K. Meyer. A series of iron nitrosyl complexes Fe-NO(6-9) and a fleeting Fe-NO(10) intermediate en route to a metalacyclic iron nitrosoalkane. J. Am. Chem. Soc., 141(43):17217–17235, 2019. URL: <Go to ISI>://WOS:000493866300028, doi:10.1021/jacs.9b08053.
V. Krewald, F. Neese, and D. A. Pantazis. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. J. Inorg. Biochem., 2019. URL: <Go to ISI>://WOS:000488146900034, doi:10.1016/j.jinorgbio.2019.110797.
Q. Lu, F. Neese, and G. Bistoni. London dispersion effects in the coordination and activation of alkanes in sigma-complexes: a local energy decomposition study. Phys. Chem. Chem. Phys., 21(22):11569–11577, 2019. URL: <Go to ISI>://WOS:000472218500051, doi:10.1039/c9cp01309a.
Dimitrios Maganas, Joanna K. Kowalska, Marcel Nooijen, Serena DeBeer, and Frank Neese. Comparison of multireference ab initio wavefunction methodologies for X-ray absorption edges: A case study on [Fe(II/III)Cl4]2–/1– molecules. J. Chem. Phys., 150(10):104106, 2019. URL: https://pubs.aip.org/aip/jcp/article-abstract/150/10/104106/1058894/, doi:https://doi.org/10.1063/1.5051613.
F. Neese, M. Atanasov, G. Bistoni, D. Maganas, and S. F. Ye. Chemistry and quantum mechanics in 2019: Give us insight and numbers. J. Am. Chem. Soc., 141(7):2814–2824, 2019. URL: <Go to ISI>://WOS:000459642000006, doi:10.1021/jacs.8b13313.
M. Saitow, A. K. Dutta, and F. Neese. Accurate ionization potentials, electron affinities and electronegativities of single-walled carbon nanotubes by state-of-the-art local coupled-cluster theory. Bull. Chem. Soc. Jpn., 92(1):170–174, 2019. URL: <Go to ISI>://WOS:000455409900003, doi:10.1246/bcsj.20180254.
C. A. M. Salla, J. T. dos Santos, G. Farias, A. J. Bortoluzi, S. F. Curcio, T. Cazati, R. Izsak, F. Neese, B. de Souza, and I. H. Bechtold. New Boron(III) blue emitters for all-solution processed OLEDs: Molecular design assisted by theoretical modeling. Eur. J. Inorg. Chem., pages 2247–2257, 2019. URL: <Go to ISI>://WOS:000471302400001, doi:10.1002/ejic.201900265.
R. G. Shirazi, F. Neese, D. A. Pantazis, and G. Bistoni. Physical nature of differential spin-state stabilization of carbenes by hydrogen and halogen bonding: A domain-based pair natural orbital coupled cluster study. J. Phys. Chem. A, 123(24):5081–5090, 2019. URL: <Go to ISI>://WOS:000472800600009, doi:10.1021/acs.jpca.9b01051.
A. Sirohiwal, F. Neese, and D. A. Pantazis. Microsolvation of the redox-active tyrosine-d in photosystem II: Correlation of energetics with EPR spectroscopy and oxidation-induced proton transfer. J. Am. Chem. Soc., 141(7):3217–3231, 2019. URL: <Go to ISI>://WOS:000459642000056, doi:10.1021/jacs.8b13123.
S. E. Stavretis, Y. Q. Cheng, L. L. Daemen, C. M. Brown, D. H. Moseley, E. Bill, M. Atanasov, A. J. Ramirez-Cuesta, F. Neese, and Z. L. Xue. Probing magnetic excitations in co-ii single-molecule magnets by inelastic neutron scattering. Eur. J. Inorg. Chem., pages 1119–1127, 2019. URL: <Go to ISI>://WOS:000459919200008, doi:10.1002/ejic.201801088.
M. K. Thomsen, A. Nyvang, J. P. S. Walsh, P. C. Bunting, J. R. Long, F. Neese, M. Atanasov, A. Genoni, and J. Oyergaard. Insights into single-molecule-magnet behavior from the experimental electron density of linear two-coordinate iron complexes. Inorg. Chem., 58(5):3211–3218, 2019. URL: <Go to ISI>://WOS:000460600300035, doi:10.1021/acs.inorgchem.8b03301.
2020¶
K. Chakarawet, M. Atanasov, J. Marbey, P. C. Bunting, F. Neese, S. Hill, and J. R. Long. Strong electronic and magnetic coupling in m-4 (m = ni, cu) clusters via direct orbital interactions between low-coordinate metal centers. J. Am. Chem. Soc., 142(45):19161–19169, 2020. URL: <Go to ISI>://WOS:000588273900023, doi:10.1021/jacs.0c08460.
Vijay Gopal Chilkuri, Serena DeBeer, and Frank Neese. Ligand Field Theory and Angular Overlap Model Based Analysis of the Electronic Structure of Homovalent Iron–Sulfur Dimers. Inorg. Chem., 59(2):984–995, 01 2020. doi:10.1021/acs.inorgchem.9b00974.
A. Dittmer, G. L. Stoychev, D. Maganas, A. A. Auer, and F. Neese. Computation of nmr shielding constants for solids using an embedded cluster approach with dft, double-hybrid dft, and mp2. J. Chem. Theory Comput., 16(11):6950–6967, 2020. URL: <Go to ISI>://WOS:000592392800018, doi:10.1021/acs.jctc.0c00067.
B. M. Floser, Y. Guo, C. Riplinger, F. Tuczek, and F. Neese. Detailed pair natural orbital-based coupled cluster studies of spin crossover energetics. J. Chem. Theory Comput., 16(4):2224–2235, 2020. URL: <Go to ISI>://WOS:000526313000020, doi:10.1021/acs.jctc.9b01109.
H. C. Gottschalk, A. Poblotzki, M. Fatima, D. A. Obenchain, C. Perez, J. Antony, A. A. Auer, L. Baptista, D. M. Benoit, G. Bistoni, F. Bohle, R. Dahmani, D. Firaha, S. Grimme, A. Hansen, M. E. Harding, M. Hochlaf, C. Holzer, G. Jansen, W. Klopper, W. A. Kopp, L. C. Kroger, K. Leonhard, M. M. Al-Mogren, H. Mouhib, F. Neese, X. N. Pereira, M. Prakash, I. S. Ulusoy, R. A. Mata, M. A. Suhm, and M. Schnell. The first microsolvation step for furans: New experiments and benchmarking strategies. J. Chem. Phys., 152(16):17, 2020. URL: <Go to ISI>://WOS:000531832400001, doi:10.1063/5.0004465.
J. Hillenbrand, M. van Gastel, E. Bill, F. Neese, and A. Furstner. Isolation of a homoleptic non-oxo Mo(V) alkoxide complex: Synthesis, structure, and electronic properties of penta-tert-butoxymolybdenum. J. Am. Chem. Soc., 142(38):16392–16402, 2020. URL: <Go to ISI>://WOS:000575684100032, doi:10.1021/jacs.0c07073.
J. Jung, S. T. Loffler, J. Langmann, F. W. Heinemann, E. Bill, G. Bistoni, W. Scherer, M. Atanasov, K. Meyer, and F. Neese. Dispersion forces drive the formation of uranium-alkane adducts. J. Am. Chem. Soc., 142(4):1864–1870, 2020. URL: <Go to ISI>://WOS:000510531900033, doi:10.1021/jacs.9b10620.
D. Maganas, J. K. Kowalska, C. Van Stappen, S. DeBeer, and F. Neese. Mechanism of L-2,L-3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V-(IV)/V-(III) complexes. J. Chem. Phys., 152(11):15, 2020. URL: <Go to ISI>://WOS:000521227700001, doi:10.1063/1.5129029.
F. Meyer and F. Neese. Impact of modern spectroscopy in inorganic chemistry. Inorg. Chem., 59(19):13805–13806, 2020. URL: <Go to ISI>://WOS:000580381700001, doi:10.1021/acs.inorgchem.0c02755.
Julian D. Rolfes, Frank Neese, and Dimitrios A. Pantazis. All-electron scalar relativistic basis sets for the elements Rb–Xe. J. Comput. Chem., 41:1842–1849, 2020. doi:10.1002/jcc.26355.
R. G. Shirazi, D. A. Pantazis, and F. Neese. Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet-triplet state splittings of aryl-carbenes. Mol. Phys., 2020. URL: <Go to ISI>://WOS:000535113400001, doi:10.1080/00268976.2020.1764644.
A. Sirohiwal, F. Neese, and D. A. Pantazis. Protein matrix control of reaction center excitation in photosystem II. J. Am. Chem. Soc., 142(42):18174–18190, 2020. URL: <Go to ISI>://WOS:000580559000041, doi:10.1021/jacs.0c08526.
Abhishek Sirohiwal, Romain Berraud-Pache, Frank Neese, Róbert Izsák, and Dimitrios A. Pantazis. Accurate computation of the absorption spectrum of chlorophyll a with pair natural orbital coupled cluster methods. J. Phys. Chem. B, 124(40):8761–8771, 2020. URL: https://doi.org/10.1021/acs.jpcb.0c05761, doi:10.1021/acs.jpcb.0c05761.
N. Spiller, V. G. Chilkuri, S. DeBeer, and F. Neese. Sulfur vs. Selenium as bridging ligand in di-iron complexes: A theoretical analysis. Eur. J. Inorg. Chem., 2020(15-16):1525–1538, 2020. URL: <Go to ISI>://WOS:000520715700001, doi:10.1002/ejic.202000033.
D. Yepes, F. Neese, B. List, and G. Bistoni. Unveiling the delicate balance of steric and dispersion interactions in organocatalysis using high-level computational methods. J. Am. Chem. Soc., 142(7):3613–3625, 2020. URL: <Go to ISI>://WOS:000515214000044, doi:10.1021/jacs.9b13725.
2021¶
M. E. Beck, C. Riplinger, F. Neese, and G. Bistoni. Unraveling individual host-guest interactions in molecular recognition from first principles quantum mechanics: Insights into the nature of nicotinic acetylcholine receptor agonist binding. J. Comput. Chem., 42(5):293–302, 2021. URL: <Go to ISI>://WOS:000591776900001, doi:https://doi.org/10.1002/jcc.26454.
R. Berraud-Pache, E. Santamaria-Aranda, B. de Souza, G. Bistoni, F. Neese, D. Sampedro, and R. Izsak. Redesigning donor-acceptor Stenhouse adduct photoswitches through a joint experimental and computational study. Chem. Sci., 12(8):2916–2924, 2021. URL: <Go to ISI>://WOS:000625958900018, doi:https://doi.org/10.1039/d0sc06575g.
C. Daniel, L. Gonzalez, and F. Neese. Quantum theory: The challenge of transition metal complexes. Phys. Chem. Chem. Phys., 23(4):2533–2534, 2021. URL: <Go to ISI>://WOS:000614634000001, doi:10.1039/d0cp90278k.
C. E. Schulz, R. G. Castillo, D. A. Pantazis, S. DeBeer, and F. Neese. Structure-spectroscopy correlations for intermediate q of soluble methane monooxygenase: Insights from QM/MM calculations. J. Am. Chem. Soc., 143(17):6560–6577, 2021. URL: <Go to ISI>://WOS:000648704100032, doi:10.1021/jacs.1c01180.
C. E. Schulz, M. van Gastel, D. A. Pantazis, and F. Neese. Converged structural and spectroscopic properties for refined qm/mm models of azurin. Inorg. Chem., 60(10):7399–7412, 2021. URL: <Go to ISI>://WOS:000653539100063, doi:10.1021/acs.inorgchem.1c00640.
A. Sirohiwal, F. Neese, and D. A. Pantazis. Chlorophyll excitation energies and structural stability of the cp47 antenna of photosystem ii: a case study in the first-principles simulation of light-harvesting complexes. Chem. Sci., 12(12):4463–4476, 2021. URL: <Go to ISI>://WOS:000635768300025, doi:10.1039/d0sc06616h.
A. Sirohiwal, F. Neese, and D. A. Pantazis. How can we predict accurate electrochromic shifts for biochromophores? a case study on the photosynthetic reaction center. J. Chem. Theory Comput., 17(3):1858–1873, 2021. URL: <Go to ISI>://WOS:000629135700044, doi:10.1021/acs.jctc.0c01152.
M. Tarrago, C. Romelt, J. Nehrkorn, A. Schnegg, F. Neese, E. Bill, and S. F. Ye. Experimental and theoretical evidence for an unusual almost triply degenerate electronic ground state of ferrous tetraphenylporphyrin. Inorg. Chem., 60(7):4966–4985, 2021. URL: <Go to ISI>://WOS:000637850300081, doi:10.1021/acs.inorgchem.1c00031.
Classification by topic¶
Ab initio Ligand Field Analyis¶
Atanasov, M.; Ganyushin, D.; Sivalingam, K.; Neese, F. )in Molecular Electronic Structures of Transition Metal Complexes II (eds. Mingos, D. M. P., Day, P. Dahl, J. P.) 149–220 (Springer Berlin Heidelberg, 2011).
Absorption, Resonance Raman and Fluorescence Spectra¶
Sirohiwal, A.; Berraud-Pache, R.; Neese, F.; Izsak, R.; Pantazis, D. A. (2020) Accurate Computation of the Absorption Spectrum of Chlorophyll alpha with Pair Natural Orbital Coupled Cluster Methods, J. Phys. Chem. B, 124, 8761-8771.
Petrenko, T.; Neese F. (2012) Efficient and automatic calculation of optical band shapes and resonance Raman spectra for larger molecules within the independent mode displaced harmonic oscillator model, J. Chem. Phys., 137, 234107.
Petrenko, T.; Neese, F. (2007) A general efficient quantum chemical method for predicting absorption bandshapes, resonance Raman spectra and excitation profiles for larger molecules. J. Chem. Phys., 127, 164319.
Petrenko, T.; Krylova, O.; Neese, F. Sokolowski, M. (2009) Optical Absorption and Emission Properties of Rubrene: Insight by a Combined Experimental and Theoretical Study. New J. Phys., 11, 015001.
Analytic Hessian Implementation¶
Bykov, D.; Petrenko, T.; Izsák, R.; Kossmann, S.; Becker, U.; Valeev, E.; Neese, F. (2015) Efficient implementation of the analytic second derivatives of Hartree-Fock and hybrid DFT energies: a detailed analysis of different approximations, Mol. Phys., 113, 1961.
Garcia-Ratés, M.; Neese, F. (2019) Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model, J. Comp. Chem., 40, 1816-1828.
ANO basis sets¶
Neese, F.; Valeev, E. F. (2011) Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods?, J. Chem. Theory Comput., 7, 33–43.
Applications¶
Mondal, B.; Neese, F.; Ye, S. F. (2016) Toward Rational Design of 3d Transition Metal Catalysts for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps, Inorg. Chem., 55, 5438-5444.
Mondal, B.; Neese, F.; Ye, S. F. (2015) Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study, Inorg. Chem., 54, 7192-7198.
Krewald, V.; Retegan, M.; Cox, N.; Messinger, J.; Lubitz, W.; DeBeer, S.; Neese, F.; Pantazis, D. A. (2015) Metal oxidation states in biological water splitting, Chem. Sci., 6, 1676-1695.
Kochem, A.; Weyhermuller, T.; Neese, F.; van Gastel, M. (2015) EPR and Quantum Chemical Investigation of a Bioinspired Hydrogenase Model with a Redox-Active Ligand in the First Coordination Sphere, Organometallics, 34, 995-1000.
Kochem, A.; Bill, E.; Neese, F.; van Gastel, M. (2015) Mossbauer and computational investigation of a functional NiFe hydrogenase model complex, Chem. Comm., 51, 2099-2102.
Approximate FCI¶
Chilkuri, V. G.; Neese, F. (2021) Comparison of many-particle representations for selected-CI I: A tree based approach, J.Comp. Chem., 2021, 42, 982-1005.
Chilkuri, V. G.; Neese, F. (2021) Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations, J. Chem. Theo. Comp., 17, 2868-2885.
CASSCF/NEVPT2/MRCI & Magnetism¶
Chilkuri, V.G., DeBeer, S., and Neese, F. (2017). Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model., Inorg. Chem., 56, 10418.
Singh, S.K., Eng, J., Atanasov, M., and Neese, F. (2017). Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective., Coordination Chemistry Reviews, 344, 225.
Jung, J., Atanasov, M., and Neese, F. (2017). Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes., Inorg. Chem., 56, 8802.
Werncke, C. G.; Suturina, E.; Bunting, P. C.; Vendier, L.; Long, J. R.; Atanasov, M.; Neese, F.; Sabo-Etienne, S.; Bontemps, S. (2016) Homoleptic Two-Coordinate Silylamido Complexes of Chromium(I), Manganese(I), and Cobalt(I), Chem. Eur. J., 22, 1668-1674.
Rechkemmer, Y.; Breitgoff, F. D.; van der Meer, M.; Atanasov, M.; Hakl, M.; Orlita, M.; Neugebauer, P.; Neese, F.; Sarkar, B.; van Slageren, J. (2016) A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier, Nat. Commun., 7, 10467.
Aravena, D.; Atanasov, M.; Neese, F. (2016) Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory, Inorg. Chem., 55, 4457-4469.
Suturina, E. A.; Maganas, D.; Bill, E.; Atanasov, M.; Neese, F. (2015) Magneto-Structural Correlations in a Series of Pseudotetrahedral Co-II(XR)(4) (2-) Single Molecule Magnets: An ab Initio Ligand Field Study, Inorg. Chem., 54, 9948-9961.
Schweinfurth, D.; Sommer, M. G.; Atanasov, M.; Demeshko, S.; Hohloch, S.; Meyer, F.; Neese, F.; Sarkar, B. (2015) The Ligand Field of the Azido Ligand: Insights into Bonding Parameters and Magnetic Anisotropy in a Co(II)-Azido Complex, J. Am. Chem. Soc., 137, 1993-2005.
Corresponding Orbital Transformation¶
Neese, F. (2004) Definition of Corresponding Orbitals and the Diradical Character in Broken Symmetry DFT Calculations on Spin Coupled Systems. J. Phys. Chem. Solids, 65, 781–785.
COSMO Implementation¶
Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F. (2006) Calculation of Solvent Shifts on Electronic G-Tensors with the Conductor-Like Screening Model (COSMO) and its Self-Consistent Generalization to Real Solvents (COSMO-RS), J. Phys. Chem. A, 110, 2235–2245.
COSX¶
Dutta, A. K.; Neese, F.; Izsak, R. (2016) Speeding up equation of motion coupled cluster theory with the chain of spheres approximation, J. Chem. Phys., 144, 034102.
Christian, G. J.; Neese, F.; Ye, S. F. (2016) Unravelling the Molecular Origin of the Regiospecificity in Extradiol Catechol Dioxygenases, Inorg. Chem., 55, 3853-3864.
Coupled-Cluster and Coupled Pair Implementation (MDCI module)¶
Pavošević, F.; Neese, F.; Valeev, E. F. (2014) Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple, J. Chem. Phys., 141, 054106
Kollmar, C.; Neese, F. (2010) The coupled electron pair approximation: variational formulation and spin adaptation, Mol. Phys., 108, 2449–2458.
Neese, F.; Wennmohs, F.; Hansen, A.; Grimme, S. (2009) Accurate Theoretical Chemistry with Coupled Electron Pair Models Acc. Chem. Res., 42(5), 641–648.
Wennmohs, F.; Neese, F. (2008) A Comparative Study of Single Reference Correlation Methods of the Coupled-Pair Type, Chem. Phys. (70\(^{th}\) birthday issue for Prof. Peyerimhoff), 343, 217–230.
EPR/NMR¶
Schulz, C. E.; van Gastel, M.; Pantazis, D. A.; Neese, F. (2021) Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin, Inorg. Chem., 60, 7399-7412.
Stoychev, G. L., Auer, A. A., Gauss, J. and Neese, F. (2021) DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings, J. Chem. Phys., 154, 164110.
Tran, V. A.; Neese, F. (2020) Double-hybrid density functional theory for g-tensor calculations using gauge including atomic orbitals, J. Chem. Phys., 153, 13.
Dittmer, A.; Stoychev, G. L.; Maganas, D.; Auer, A. A.; Neese, F. (2020) Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2, J. Chem. Theo. Comp., 16, 6950-6967.
Auer, A. A.; Tran, V. A.; Sharma, B.; Stoychev, G. L.; Marx, D.; Neese, F. (2020) A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on EPR hyperfine coupling constants: vibrational perturbation theory versusab initiomolecular dynamics, Mol. Phys., 16.
Lang, L.; Ravera, E.; Parigi, G.; Luchinat, C.; Neese, F. (2020) Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory, J. Phys. Chem. Lett., 11, 8735-8744.
Sirohiwal, A.; Neese, F.; Pantazis, D. A. (2019) Microsolvation of the Redox-Active Tyrosine-D in Photosystem II: Correlation of Energetics with EPR Spectroscopy and Oxidation-Induced Proton Transfer, J. Am. Chem. Soc., 141, 3217-3231.
ESD Module¶
Fluorescence¶
de Souza, B.; Neese F.; Izsak (2018) On the theoretical prediction of fluorescence rates from first principles using the path integral approach, J. Chem. Phys., 148, 034104.
Phosphorescence¶
de Souza, B.; Farias, G.; Neese F.; Izsak (2019) Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics, J. Chem. Theo. Comp., 15, 1896.
Resonance Raman¶
De Souza, B.; Farias, G.; Neese, F.; Izsak, R. (2019) Efficient simulation of overtones and combination bands in Resonant Raman spectra, J. Chem. Phys., accepted - waiting for publication.
DFT/Hartree–Fock Theory of EPR Parameters¶
Sandhoefer, B.; Neese, F. (2012) One-electron contributions to the g-tensor for second-order Douglas–Kroll–Hess theory, J. Chem. Phys., 137, 094102.
Ganyushin, D.; Gilka, N.; Taylor, P. R.; Marian, C. M.; Neese, F. (2010) The resolution of the identity approximation for calculations of spin-spin contribution to zero-field splitting parameters, J. Chem. Phys., 132, 144111.
Duboc, C.; Ganyushin, D.; Sivalingam, K.; Collomb, M. N.; Neese, F. (2010) Systematic Theoretical Study of the Zero-Field Splitting in Coordination Complexes of Mn(III). Density Functional Theory versus Multireference Wave Function Approaches, J. Phys. Chem. A, 114, 10750–10758.
Neese, F. (2009) First principles approach to Spin-Hamiltonian Parameters, invited chapter in Misra, S.K. Multifrequency EPR: Theory and Applications, Wiley-VCH, pp. 297–326.
Pantazis, D. A.; Orio, M.; Petrenko, T.; Messinger, J.; Lubitz, W.; Neese, F. (2009) A new quantum chemical approach to the magnetic properties of oligonuclear transition metal clusters: Application to a model for the tetranuclear manganese cluster of Photosystem II Chem. Eur. J., 15(20), 5108–5123.
Riplinger, C.; Kao, J.P.Y.; Rosen, G.M.; Kathirvelu, V.; Eaton, G.R.; Eaton, S.S.; Kutateladze, A.; Neese F. (2009) Interaction of Radical Pairs Through-Bond and Through-Space: Scope and Limitations of the Point-Dipole Approximation in Electron Paramagnetic Resonance Spectroscopy, J. Am. Chem. Soc., 131, 10092–10106.
Cirera, J.; Ruiz, E.; Alvarez, S.; Neese, F.; Kortus, J. (2009) How to Build Molecules with Large Magnetic Anisotropy. Chem. Eur. J., 15(16), 4078–4087.
Neese, F. (2008) Spin Hamiltonian Parameters from First Principle Calculations: Theory and Application. In Hanson, G.; Berliner, L. (Eds), Biological Magnetic Resonance, pp. 175–232.
Koßmann, S.; Kirchner, B.; Neese, F. (2007) Performance of modern density functional theory for the prediction of hyperfine structure: meta-GGA and double hybrid functionals, Molec. Phys. (Arthur Schweiger memorial issue), 105, 2049–2071.
Neese, F. (2007) Calculation of the Zero-Field Splitting Tensor Using Hybrid Density Functional and Hartree-Fock Theory. J. Chem. Phys., 127, 164112.
Neese, F. (2006) Importance of Direct Spin-Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes: A Case Study, J. Am. Chem. Soc., 128, 10213–10222.
Sinnecker, S.; Neese, F. (2006) Spin-Spin Contributions to the Zero-Field Splitting Tensor in Organic Triplets, Carbenes and Biradicals – A Density Functional and ab initio Study. J. Phys. Chem. A, 110, 12267–12275.
Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F. (2006) Calculation of Solvent Shifts on Electronic G-Tensors with the Conductor-Like Screening Model (COSMO) and its Self-Consistent Generalization to Real Solvents (COSMO-RS), J. Phys. Chem. A, 110, 2235–2245.
Neese, F.; Wolf, A.; Reiher, M.; Fleig, T.; Hess, B.A. (2005) Higher Order Douglas-Kroll Calculation of Electric Field Gradients, J. Chem. Phys., 122, 204107.
Neese, F. (2005) Efficient and Accurate Approximations to the Molecular Spin-Orbit Coupling Operator and their use in Molecular g-Tensor Calculations, J. Chem. Phys., 122, 034107.
Ray, K.; Begum,\(^{\, }\)A; Weyhermüller, T.;\(^{\, }\)Piligkos, S.; van \(^{\, }\)Slageren, J.; Neese, F.; Wieghardt, K. (2005) The Electronic Structure of the Isoelectronic, Square Planar Complexes [Fe\(^{\mathrm{II}}\)(L)\(_{2}\)]\(^{2-}\) and [Co\(^{\mathrm{III}}\)(L\(^{Bu})_{2}\)]\(^{-}\) (L\(^{2-}\) and (L\(^{Bu})^{2-} =\) benzene-1,2-dithiolates): an Experimental and Density Functional Theoretical Study, J. Am. Chem. Soc., 127, 4403–4415.
Neese, F. (2003) Metal and Ligand Hyperfine Couplings in Transition Metal Complexes. The Effect of Spin-Orbit Coupling as Studied by Coupled Perturbed Kohn-Sham Theory and Hybrid Density Functionals, J. Chem. Phys., 117, 3939–3948.
Neese, F. (2001) Prediction of Electron Paramagnetic Resonance g-values by Coupled Perturbed Hartree-Fock and Kohn-Sham Theory. J. Chem. Phys., 115, 11080–11096.
Neese, F. (2001) Theoretical Study of Ligand Superhyperfine Structure. Application to Cu(II) Complexes. J. Phys. Chem. A, 105, 4290–4299.
Dispersion Corrections to DFT¶
(not originally implemented in but the implementation is based on the code described in these papers)
Grimme, S. (2004) J. Comput. Chem., 25, 1463–1476.
Grimme, S. (2006) J. Comput. Chem., 27, 1787–1799.
Grimme, S.; Antony, J. Ehrlich, S. Krieg, H. (2010) J. Chem. Phys., 132, 154104.
Grimme, S.; Ehrlich, S.; Goerigk, L. (2011) J. Comput. Chem., 32, 1456-1465.
DLPNO¶
Stoychev, G. L., Auer, A. A., Gauss, J. and Neese, F. (2021) DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings, J. Chem. Phys., 154, 164110.
Ni, Z. G.; Guo, Y.; Neese, F.; Li, W.; Li, S. H. (2021) Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems, J. Chem. Theo. Comp., 17, 756-766.
Liakos, D. G.; Guo, Y.; Neese, F. (2020) Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems, J. Phys. Chem. A, 124, 90-100.
Guo, Y.; Riplinger, C.; Liakos, D. G.; Becker, U.; Saitow, M.; Neese, F. (2020) Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory DLPNO-CCSD(T-0/T), J. Chem. Phys., 152.
Altun, A.; Neese, F.; Bistoni, G. (2020) Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations, J. Chem. Theo. Comp., 16, 6142-6149.
Pinski, P.; Neese, F. (2019) Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2), J. Chem. Phys., 150, 164102.
Pinski, P.; Neese, F. (2018) Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2), J. Chem. Phys., 148, 031101.
Sparta, M.; Retegan, M.; Pinski, P.; Riplinger, C.; Becker, U.; Neese, F. (2017) Multilevel Approaches within the Local Pair Natural Orbital Framework, J. Chem. Theory Comput., 13, 3198-3207.
Pavosevic, F; Peng, C.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E.F. (2017) SparseMaps-A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals, J. Chem. Phys., 146, 174108.
Schneider, W. B.; Bistoni, G.; Sparta, M.; Saitow, M.; Riplinger, C.; Auer, A. A.; Neese, F. (2016) Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework, J. Chem. Theory Comput., 12, 4778-4792.
Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. (2016) Sparse maps-A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory, J. Chem. Phys., 144, 024109.
Pavosevic, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. (2016) SparseMaps-A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals, J. Chem. Phys., 144, 144109.
Kubas, A.; Berger, D.; Oberhofer, H.; Maganas, D.; Reuter, K.; Neese, F. (2016) Surface Adsorption Energetics Studied with “Gold Standard” Wave Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110), J. Phys. Chem. Lett., 7, 4207-4212.
Isegawa, M.; Neese, F.; Pantazis, D. A. (2016) Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches, J. Chem. Theory Comput., 12, 2272-2284.
Guo, Y.; Sivalingam, K.; Valeev, E. F.; Neese, F. (2016) SparseMaps-A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory, J. Chem. Phys., 144, 094111.
Dutta, A. K.; Neese, F.; Izsak, R. (2016) Towards a pair natural orbital coupled cluster method for excited states, J. Chem. Phys., 145, 034102.
Datta, D.; Kossmann, S.; Neese, F. (2016) Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory, J. Chem. Phys., 145, 114101.
Pinski, P.; Riplinger, C.; Valeev, E. F.; Neese, F. (2016) Sparse maps-A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals, J. Chem. Phys., 143, 034108.
Mondal, B.; Neese, F.; Ye, S. F. (2015) Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study, Inorg. Chem., 54, 7192-7198.
Liakos, D. G.; Sparta, M.; Kesharwani, M. K.; Martin, J. M. L.; Neese, F. (2015) Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory, J. Chem. Theory Comput., 11, 1525-1539.
Liakos, D. G.; Neese, F. (2015) Domain Based Pair Natural Orbital Coupled Cluster Studies on Linear and Folded Alkane Chains, J. Chem. Theory Comput., 11, 2137-2143.
Liakos, D. G.; Neese, F. (2015) Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory, J. Chem. Theory Comput., 11, 4054-4063.
Demel, O.; Pittner, J.; Neese, F. (2015) A Local Pair Natural Orbital-Based Multireference Mukherjee’s Coupled Cluster Method, J. Chem. Theory Comput., 11, 3104-3114.
Double hybrid density functionals¶
Grimme, S.; Neese, F. (2007) Double Hybrid Density Functional Theory for Excited States of Molecules, J. Chem. Phys., 127, 154116.
Neese, F.; Schwabe, T.; Grimme, S. (2007) Analytic Derivatives for Perturbatively Corrected ‘Double Hybrid’ Density Functionals, J. Chem. Phys., 126, 124115.
Koßmann, S.; Kirchner, B.; Neese, F. (2007) Performance of modern density functional theory for the prediction of hyperfine structure: meta-GGA and double hybrid functionals, Mol. Phys. (Arthur Schweiger memorial issue), 105, 2049–2071.
Excited States Methods and Resonance Raman Spectra¶
Schapiro, I.; Sivalingam K.; Neese, F. (2015) Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies, J. Chem. Theory Comput., 9, 3567.
Roemelt, M.; Neese, F. (2013) Excited States of Large Open-Shell Molecules: An Efficient, General, and Spin-Adapted Approach Based on a Restricted Open-Shell Ground State Wave function, J. Phys. Chem. A, 117, 3069.
Petrenko, T.; Kossmann, S.; Neese, F. (2011) Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization, J. Chem. Phys., 134, 054116.
Petrenko, T.; Krylova, O.; Neese, F.; Sokolowski, M. (2009) Optical Absorption and Emission Properties of Rubrene: Insight by a Combined Experimental and Theoretical Study. New J. Phys., 11, 015001.
Grimme, S.; Neese, F. (2007) Double Hybrid Density Functional Theory for Excited States of Molecules, J. Chem. Phys., 127, 154116.
Petrenko, T.; Ray, K.; Wieghardt, K.; Neese, F. (2006) Vibrational Markers for the Open-Shell Character of Metal bis-Dithiolenes: An Infrared, resonance Raman and Quantum Chemical Study. J. Am. Chem. Soc., 128, 4422–4436.
Neese, F.; Olbrich, G. (2002) Efficient use of the Resolution of the Identity Approximation in Time-Dependent Density Functional Calculations with Hybrid Functionals, Chem. Phys. Lett., 362, 170–178.
F12¶
Pavosevic, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. (2016) SparseMaps-A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals, J. Chem. Phys., 144, 144109.
Guo, Y.; Sivalingam, K.; Valeev, E.F.and Neese, F. (2017), Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12), J. Chem. Phys., 147, 064110.
Liakos D. G.; Izsák R.; F.; Valeev, E. F.; Neese, F. (2013) What is the most efficient way to reach the canonical MP2 basis set limit?, Mol. Phys., 111, 2653
FOD analysis and FOD plots¶
Grimme, S.; Hansen, A. (2015) A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects, Angew. Chem. Int. Ed., 54, 12308.
Gaussian Charge Scheme (C-PCM) Implementation¶
Garcia-Ratés, M.; Neese, F. (2020) Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme, J. Comput. Chem., 41, 922-939.
gCP correction to HF and DFT¶
( ORCA implementation is based upon the code used in this paper)
Kruse, H; Grimme, S. (2012) J. Chem. Phys., 126, 154101.
HF-3c method¶
Sure, R; Grimme, S. (2013) J. Comput. Chem., 34, 1672-1685.
Internally Contracted Multireference CI¶
Sivalingam, K.; Krupicka, M.; Auer, A. A.; Neese, F. (2016) Comparison of fully internally and strongly contracted multireference configuration interaction procedures. J. Chem. Phys., 145, 54104.
Magnetic Circular Dichroism Spectra¶
Westphal, A.; Broda, H.; Kurz, P.; Neese, F.; Tuczek, F. (2012) Magnetic Circular Dichroism Spectrum of the Molybdenum(V) Complex (Mo(O)Cl\(_3\)dppe): C-Term Signs and Intensities for Multideterminant Excited Doublet States, Inorg. Chem., 51, 5748–5763.
van Slageren, J.; Piligkos, S.; Neese, F. (2010) Magnetic circular dichroism spectroscopy on the Cr(8) antiferromagnetic ring, Dalton Trans., 39, 4999–5004.
Sundararajan, M.; Ganyushin, D.; Ye, S.; Neese, F. (2009) Multireference ab initio studies of Zero-Field Splitting and Magnetic Circular Dichroism Spectra of Tetrahedral Co(II) Complexes, Dalton Trans., 30, 6021–6036.
Piligkos, S.; Slep, L.; Weyhermüller, T.; Chaudhuri, P.; Bill, E.; Neese, F. (2009) Magnetic Circular Dichroism Spectroscopy of weakly exchange coupled dimers. A model study. Coord. Chem. Rev., 253, 2352–2362.
Ganyushin, D.; Neese, F. (2008) First principles calculation of magnetic circular dichroism spectra, J. Chem. Phys., 128, 114117.
Neese, F.; Solomon, E.I. (1999) MCD \(C\)-term Signs, Saturation Behavior and Determination of Band Polarizations in Randomly Oriented Systems with Spin \(S \geqslant 1/2\). Applications to \(S=1/2\) and \(S=5/2\). Inorg. Chem., 38, 1847–1865.
MCD¶
Ye, S. F.; Kupper, C.; Meyer, S.; Andris, E.; Navratil, R.; Krahe, O.; Mondal, B.; Atanasov, M.; Bill, E.; Roithova, J.; Meyer, F.; Neese, F. (2016) Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene-Oxoiron(IV) Complex, J. Am. Chem. Soc., 138, 14312-14325.
Ye, S. F.; Xue, G. Q.; Krivokapic, I.; Petrenko, T.; Bill, E.; Que, L.; Neese, F. (2015) Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(IV) complexes, Chem. Sci., 6, 2909-2921.
MDCI¶
Veis, L.; Antalik, A.; Brabec, J.; Neese, F.; Legeza, O.; Pittner, J. (2016) Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions, J. Phys. Chem. Lett., 7, 4072-4078.
Dutta, A. K.; Neese, F.; Izsak, R. (2016) Speeding up equation of motion coupled cluster theory with the chain of spheres approximation, J. Chem. Phys., 144, 034102.
Mössbauer Spectroscopy¶
Datta, D.; Saitow, M.; Sandhofer, B.; Neese, F. (2020) Fe-57 Mossbauer parameters from domain based local pair-natural orbital coupled-cluster theory, J. Chem. Phys., 153.
Römelt, M.; Ye, S.; Neese, F. (2009) Calibration of Mössbauer Isomer Shift Calculations for Modern Density Functional Theory: meta-GGA and Double Hybrid Functionals Inorg. Chem., 48, 784–785.
Sinnecker, S.; Slep, L.; Bill, E.; Neese, F. (2005) Performance of Nonrelativistic and Quasirelativistic Hybrid DFT for the Prediction of Electric and Magnetic Hyperfine Parameters in \(^{57}\)Fe Mössbauer Spectra, Inorg. Chem., 44, 2245–2254.
Neese, F. (2002) Prediction and Interpretation of Isomer Shifts in \(^{57}\)Fe Mössbauer Spectra by Density Functional Theory. Inorg. Chim. Acta (special Karl Wieghardt honorary issue), 337C, 181–192.
Multireference CI Module and its application to EPR properties and optical spectra¶
Lang, L.; Sivalingam, K.; Neese, F. (2020) The combination of multipartitioning of the Hamiltonian with canonical Van Vleck perturbation theory leads to a Hermitian variant of quasidegenerate N-electron valence perturbation theory, J. Chem. Phys., 152.
Demel, O.; Pittner, J.; Neese, F. (2015) A Local Pair Natural Orbital-Based Multireference Mukherjee’s Coupled Cluster Method, J. Chem. Theory Comput., 11, 3104.
Nooijen, M.; Demel, O.; Datta, D.; Kong, L.; Shamasundar K. R.; Lotrich, V.; Huntington, L. M.; Neese, F. (2014), J. Chem. Phys., 140, 081102.
Ganyushin, D.; Neese, F. (2013) A fully variational spin-orbit coupled complete active space self-consistent field approach: Application to electron paramagnetic resonance g-tensors, J. Chem. Phys., 138, 104113.
Atanasov, M.; Zadrozny, J. M.; Long, J. R.; Neese, F. (2013) A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior, Chem. Sci., 4, 139–156.
Atanasov, M.; Ganyushin, D.; Pantazis, D. A.; Sivalingam, K.; Neese, F. (2011) Detailed Ab Initio First-Principles Study of the Magnetic Anisotropy in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes, Inorg. Chem, 50, 7460–7477.
Neese, F.; Pantazis, D. A. (2011) What is not required to make a single molecule magnet, Faraday Discussions, 148, 229–238.
Duboc, C.; Ganyushin, D.; Sivalingam, K.; Collomb, M. N.; Neese, F. (2010) Systematic Theoretical Study of the Zero-Field Splitting in Coordination Complexes of Mn(III). Density Functional Theory versus Multireference Wave Function Approaches, J. Phys. Chem. A, 114, 10750–10758.
Sundararajan, M.; Ganyushin, D.; Ye, S.; Neese, F. (2009) Multireference ab initio studies of Zero-Field Splitting and Magnetic Circular Dichroism Spectra of Tetrahedral Co(II) Complexes, Dalton Trans., 30, 6021–6036.
Ganyushin, D.; Neese, F. (2008) First principles calculation of magnetic circular dichroism spectra, J. Chem. Phys., 128, 114117.
Petrenko, T.; Neese, F. (2007) A general efficient quantum chemical method for predicting absorption bandshapes, resonance Raman spectra and excitation profiles for larger molecules. J. Chem. Phys., 127, 164319.
Neese, F. (2007) Analytic Derivative Calculation of Electronic g-Tensors based on Multireference Configuration Interaction Wavefunctions. Mol. Phys. (honorary issue for Prof. Peter Pulay), 105, 2507–2514.
Neese, F.; Petrenko, T.; Ganyushin, D.; Olbrich, G. (2007) Advanced Aspects of ab initio Theoretical Spectroscopy of Open-Shell Transition Metal Ions\(.\) Coord. Chem. Rev., 205, 288–327.
Neese, F. (2006) Importance of Direct Spin-Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes: A Case Study, J. Am. Chem. Soc., 128, 10213–10222.
Chalupský, J.; Neese, F.; Solomon, E.I.; Ryde, U.; Rulíšek, L. (2006) Identification of intermediates in the reaction cycle of multicopper oxidases by quantum chemical calculations of spectroscopic parameters, Inorg. Chem., 45, 11051–11059.
Neese, F. (2006) Theoretical spectroscopy of model-nonheme [Fe\(^{\mathrm{IV}}\)O(NH\(_{3})_{5}\)]\(^{2+}\) complexes with triplet and quintet ground states using multireference ab initio and density functional theory methods. J. Inorg. Biochem. (special issue on high-valent Fe(IV)), 716–726.
Ganyushin, D.; Neese, F. (2006) First Principle Calculation of Zero-Field Splittings, J. Chem. Phys., 125, 024103.
Ray, K.; Weyhermüller, T.; Neese, F.; Wieghardt, K. (2005) Electronic Structure of Square-Planar Bis(benzene-1,2-dithiolate)metal Complexes [M(L)\(_{2}\)]\(^{z}\) (\(z=2-,1-,0\); M \(=\) Ni, Pd, Pt, Cu, Au): An experimental, Density Functional and Correlated ab initio Study. Inorg. Chem., 44, 5345–5360.
Schöneboom, J.; Neese, F.; Thiel, W. (2005) Towards Identification of the Compound I Reactive Intermediate in Cytochrome P450 Chemistry: A QM/MM Study of its EPR and Mössbauer Parameters, J. Am. Chem. Soc., 127, 5840–5853.
Wanko, M.; Hoffmann, M.; Strodel, P.; Thiel, W.; Neese, F.; Frauenheim, T.; Elstner, M. (2005) Calculating Absorption Shifts for Retinal Proteins: Computational Challenges J. Phys. Chem. B, 109, 3606–3615.
Neese, F. (2004) Sum Over States Based Multireference ab initio Calculation of EPR Spin Hamiltonian Parameters for Transition Metal Complexes. A Case Study Mag. Res. Chem., 42, S187–S198.
Neese, F. (2003) Correlated ab Initio Calculation of Electronic g-Tensors Using a Sum Over States Formulation. Chem. Phys. Lett., 380/5–6, 721–728.
Neese, F. (2003) A Spectroscopy Oriented Configuration Interaction Procedure, J. Chem. Phys., 119, 9428–9443.
Neese, F. (2001) Configuration Interaction Calculation of Electronic g-Tensors in Transition Metal Complexes, Int. J. Quant. Chem., 83, 104–114.
Neese, F.; Solomon, E.I. (1998) Calculation of Zero-Field Splittings, \(g\)-values and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High Spin Ferric Complexes. Inorg. Chem., 37, 6568–6582.
NRVS¶
Ogata, H.; Kramer, T.; Wang, H. X.; Schilter, D.; Pelmenschikov, V.; van Gastel, M.; Neese, F.; Rauchfuss, T. B.; Gee, L. B.; Scott, A. D.; Yoda, Y.; Tanaka, Y.; Lubitz, W.; Cramer, S. P. (2015) Hydride bridge in NiFe -hydrogenase observed by nuclear resonance vibrational spectroscopy, Nat. Commun., 6, 7890.
Nuclear Resonance Vibrational Spectra¶
Petrenko T,; Sturhahn, W.; Neese, F. (2008) First principles calculation of Nuclear Resonance Vibrational Spectra, Hyperfine Interactions, 175, 165–174.
DeBeer-George, S.; Petrenko, T.; Aliaga-Alcade, N.; Bill, E.; Mienert, B.; Sturhan, W.; Ming, Y.; Wieghardt, K.; Neese, F. (2007) Characterization of a Genuine Iron(V)Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations, J. Am. Chem. Soc., 129, 11053–11060.
Orbital Optimized MP2¶
Shirazi, R. G.; Pantazis, D. A.; Neese, F. (2020) Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet-triplet state splittings of aryl-carbenes, Mol. Phys., 118.
Sandhoefer, B.; Kossmann, S.; Neese, F. (2013) Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Moller-Plesset perturbation theory and the second-order Douglas–Kroll–Hess transformation, J. Chem. Phys., 138, 104102.
Kossmann, S.; Neese, F. (2010) Correlated ab Initio Spin Densities for Larger Molecules: Orbital-Optimized Spin-Component-Scaled MP2 Method, J. Phys. Chem. A, 114, 11768-11781.
Neese, F.; Schwabe, T.; Kossmann, S.; Schirmer, B.; Grimme, S. (2009) Assessment of Orbital Optimized, Spin-Component Scaled Second Order Many Body Perturbation Theory for Thermochemistry and Kinetics. J. Chem. Theory Comput., 5, 3060-3073.
Pair Natural Orbital Local Correlation Methods¶
Riplinger, C.; Sandhoefer B.; Hansen, A.; Neese, F. (2013) Natural triple excitations in local coupled cluster calculations with pair natural orbitals, J. Chem. Phys., 139, 134101.
Riplinger, C.; Neese, F. (2013) An efficient and near linear scaling pair natural orbital based local coupled cluster method, J. Chem. Phys., 138, 034106.
Liakos, D. G.; Neese, F. (2012) Improved Correlation Energy Extrapolation Schemes Based on Local Pair Natural Orbital Methods, J. Phys. Chem. A, 116, 4801–4816.
Huntington, L. M. J.; Hansen, A.; Neese, F.; Nooijen, M. (2012) Accurate thermochemistry from a parameterized coupled-cluster singles and doubles model and a local pair natural orbital based implementation for applications to larger systems, J. Chem. Phys., 136, 064101.
Izsák, R.; Hansen, A.; Neese, F. (2012) The resolution of identity and chain of spheres approximations for the LPNO-CCSD singles Fock term, Mol. Phys., 110, 2413–2417.
Liakos, D. G.; Hansen, A.; Neese, F. (2011) Weak Molecular Interactions Studied with Parallel Implementations of the Local Pair Natural Orbital Coupled Pair and Coupled Cluster Methods, J. Chem. Theory Comput., 7, 76–87.
Hansen, A.; Liakos, D. G.; Neese, F. (2011) Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals, J. Chem. Phys., 135, 214102.
Kollmar, C.; Neese, F. (2011) An orbital-invariant and strictly size extensive post-Hartree-Fock correlation functional, J. Chem. Phys., 135, 084102.
Kollmar, C.; Neese, F. (2011) The relationship between double excitation amplitudes and Z vector components in some post-Hartree-Fock correlation methods, J. Chem. Phys., 135, 064103.
Neese, F.; Liakos, D.; Hansen, A. (2009) Efficient and accurate local approximations to the coupled cluster singles and doubles method using a truncated pair natural orbital basis J. Chem. Phys., 131, 064103.
Neese, F.; Wennmohs, F.; Hansen, A. (2009) Efficient and accurate local approximations to coupled electron pair approaches. An attempt to revive the pair-natural orbital method J. Chem. Phys., 130, 114108.
PBEh-3c method¶
Grimme, S.; Brandenburg, J. G.; Bannwarth, C.; Hansen, A. (2015) Consistent structures and interactions by density functional theory with small atomic orbital basis sets, J. Chem. Phys., 143, 054107 .
QM/MM¶
Rokhsana, D.; Large, T. A. G.; Dienst, M. C.; Retegan, M.; Neese, F. (2016) A realistic in silico model for structure/function studies of molybdenum-copper CO dehydrogenase Journal of Biological, Inorg. Chem., 21, 491-499.
Retegan, M.; Krewald, V.; Mamedov, F.; Neese, F.; Lubitz, W.; Cox, N.; Pantazis, D. A. (2016) A five-coordinate Mn(IV) intermediate in biological water oxidation: spectroscopic signature and a pivot mechanism for water binding, Chem. Sci., 7, 72-84.
Sundararajan, M.; Neese, F. Distal (2015) Histidine Modulates the Unusual O-Binding of Nitrite to Myoglobin: Evidence from the Quantum Chemical Analysis of EPR Parameters, Inorg. Chem., 54, 7209-7217.
QM/MM calculations with ORCA¶
Schulz, C. E.; van Gastel, M.; Pantazis, D. A.; Neese, F. (2021) Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin, Inorg. Chem., 60, 7399-7412.
Schulz, C. E.; Castillo, R. G.; Pantazis, D. A.; DeBeer, S.; Neese, F. (2021) Structure-Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations, J. Am. Chem. Soc., 143, 6560-6577.
Sundararajan, M.; Neese, F. (2012) Detailed QM/MM study of the Electron Paramagnetic Resonance Parameters of Nitrosyl Myoglobin, J. Chem. Theory Comput., 8, 563–574.
Riplinger, C.; Neese, F. (2011) The reaction mechanism of Cytochrome P450 NO Reductase: A Detailed Quantum Mechanics/Molecular Mechanics Study, ChemPhysChem, 12, 3192–3203.
Radoul, M.; Sundararajan, M.; Potapov, A.; Riplinger, C.; Neese, F.; Goldfarb, D. (2010) Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations, Phys. Chem. Chem. Phys., 12, 7276–7289.
Sundararajan, M.; Riplinger, C.; Orio, M.; Wennmohs, F.; Neese, F. (2009) Spectroscopic Properties of Protein-Bound Cofactors: Calculation by Combined Quantum Mechanical/Molecular Mechanical (QM/MM) Approaches, Encyc. Inorg. Chem., DOI: 10.1002/9781119951438.eibc0371.
Altun,\(^{\, }\)A.; Kumar, D.; Neese,\(^{\, }\)F.; Thiel, W. (2008) Multi-reference Ab Initio QM/MM Study on Intermediates in the Catalytic Cycle of Cytochrome P450cam, J. Phys. Chem., 112, 12904–12910.
Chalupský, J.; Neese, F.; Solomon, E.I.; Ryde, U.; Rulíšek, L. (2006) Identification of intermediates in the reaction cycle of multicopper oxidases by quantum chemical calculations of spectroscopic parameters, Inorg. Chem., 45, 11051–11059.
Sinnecker, S.; Neese, F. (2006) QM/MM Calculations with DFT for Taking into Account Protein Effects on the EPR and Optical Spectra of Metalloproteins. Plastocyanin as a Case Study. J. Comp. Chem. (Special issue on Theoretical Bioinorganic Chemistry), 27, 1463–1475.
Wanko, M.; Hoffmann, M.; Strodel, P.; Thiel, W.; Neese, F.; Frauenheim, T.; Elstner, M. (2005) Calculating Absorption Shifts for Retinal Proteins: Computational Challenges J. Phys. Chem. B, 109, 3606–3615.
Schöneboom, J.; Neese, F.; Thiel, W. (2005) Towards Identification of the Compound I Reactive Intermediate in Cytochrome P450 Chemistry: A QM/MM Study of its EPR and Mössbauer Parameters, J. Am. Chem. Soc., 127, 5840–5853.
Relativity and SARC Basis Sets¶
Rolfes, J. D.; Neese, F.; Pantazis, D. A. (2020) All-electron scalar relativistic basis sets for the elements Rb–Xe, J. Comput. Chem., 41, 1842-1849.
Aravena, D.; Neese, F.; Pantazis, D. A. (2016) Improved Segmented All-Electron Relativistically Contracted Basis Sets for the Lanthanides, J. Chem. Theory Comput., 12, 1148-1156.
Pantazis, D. A.; Neese, F. (2012) All-Electron Scalar Relativistic Basis Sets for the 6p Elements, Theor. Chem. Acc., 131, 1292.
Pantazis, D. A.; Neese, F. (2011) All-Electron Scalar Relativistic Basis Sets for the Actinides, J. Chem. Theory Comput., 7, 677–684.
Pantazis, D. A.; Neese, F. (2009) All-Electron Scalar Relativistic Basis Sets for the Lanthanides, J. Chem. Theory Comput., 5, 2229–2238.
Bühl, M.; Reimann, C.; Pantazis, D. A.; Bredow, T.; Neese, F. (2008) Geometries of Third-row Transition-Metal Complexes from Density-Functional Theory J. Chem. Theory Comput., 4, 1449–1459.
Pantazis, D. A.; Chen, X.-Y.; Landis, C.R.; Neese, F. (2008) All Electron Scalar Relativistic Basis Sets for Third Row Transition Metal Atoms. J. Chem. Theory Comput., 4, 908–919.
Resonance Raman¶
Maganas, D.; Trunschke, A.; Schlogl, R.; Neese, F. (2016) A unified view on heterogeneous and homogeneous catalysts through a combination of spectroscopy and quantum chemistry, Farad. Discuss., 188, 181-197.
De Souza, B.; Farias, G.; Neese, F.; Izsak, R. (2019) Efficient simulation of overtones and combination bands in Resonant Raman spectra, J. Chem. Phys., accepted - waiting for publication.
SOC on TD-DFT¶
de Souza, B.; Farias, G.; Neese F.; Izsak (2019) Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics, J. Chem. Theo Comp., 15, 1896.
SOSCF Method¶
Neese, F. (2000) Approximate Second Order Convergence for Spin Unrestricted Wavefunctions. Chem. Phys. Lett., 325, 93–98.
The Split-J, Split-RI-J, RIJCOSX and RI-JK methods¶
Izsák, R.; Neese, F. (2013) Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method, Mol. Phys., 111, 1190.
Izsák, R.; Neese, F. (2011) An overlap fitted chain of spheres exchange method, J. Chem. Phys., 135, 144105.
Kossmann, S.; Neese, F. (2010) Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method, J. Chem. Theory Comput., 6, 2325-2338.
Kossmann, S.; Neese, F. (2009) Comparison of Two Efficient Approximate Hartree–Fock Approaches. Chem. Phys. Lett., 481, 240-243.
Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. (2009) Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange, Chem. Phys., 356, 98–109.
Neese, F. (2003) An Improvement of the Resolution of the Identity Approximation for the Calculation of the Coulomb Matrix, J. Comp. Chem., 24, 1740–1747.
sTDA and sTD-DFT approaches for electronic spectra¶
Grimme, S. (2013) J. Chem. Phys., 138, 244104 .
Risthaus, T.; Hansen, A.; Grimme, S. (2014) Phys. Chem. Chem. Phys., 16, 14408 .
Bannwarth, C.; Grimme, S. (2014) Comput. Theor. Chem., 1040-1041, 45-53 .
XAS/XES¶
Van Kuiken, B. E.; Hahn, A. W.; Maganas, D.; DeBeer, S. (2016) Measuring Spin-Allowed and Spin-Forbidden d-d Excitations in Vanadium Complexes with 2p3d Resonant Inelastic X-ray Scattering, Inorg. Chem., 55, 11497-11501.
Rees, J. A.; Wandzilak, A.; Maganas, D.; Wurster, N. I. C.; Hugenbruch, S.; Kowalska, J. K.; Pollock, C. J.; Lima, F. A.; Finkelstein, K. D.; DeBeer, S. (2016) Experimental and theoretical correlations between vanadium K-edge X-ray absorption and K emission spectra, J. Biol. Inorg. Chem., 21, 793-805.
Martin-Diaconescu, V.; Chacon, K. N.; Delgado-Jaime, M. U.; Sokaras, D.; Weng, T. C.; DeBeer, S.; Blackburn, N. J. (2016) K beta Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase, Inorg. Chem., 55, 3431-3439.
Maganas, D.; Trunschke, A.; Schlogl, R.; Neese, F. (2016) A unified view on heterogeneous and homogeneous catalysts through a combination of spectroscopy and quantum chemistry, Farad. Discuss., 188, 181-197.
Kowalska, J. K.; Hahn, A. W.; Albers, A.; Schiewer, C. E.; Bjornsson, R.; Lima, F. A.; Meyer, F.; DeBeer, S. (2016) X-ray Absorption and Emission Spectroscopic Studies of L2Fe2S2 (n) Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron-Sulfur Clusters, Inorg. Chem., 55, 4485-4497.
Rees, J. A.; Martin-Diaconescu, V.; Kovacs, J. A.; DeBeer, S. (2015) X-ray Absorption and Emission Study of Dioxygen Activation by a Small-Molecule Manganese Complex, Inorg. Chem., 54, 6410-6422.
Rees, J. A.; Bjornsson, R.; Schlesier, J.; Sippel, D.; Einsle, O.; DeBeer, S. (2015) The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom, Angew. Chem. Int. Ed., 54, 13249-13252.
X-Ray Absorption and X-Ray Emission Spectra¶
Maganas, D.; Kowalska, J. K.; Nooijen, M.; DeBeer, S.; Neese, F. (2019) Comparison of multireference ab initio wavefunction methodologies for X- ray absorption edges: A case study on Fe(II/III)Cl-4 (2-/1-) molecules, J. Chem. Phys., 150.
Roemelt, M.; Beckwith, M. A.; Duboc, C.; Collomb, M.-N.; Neese, F.; DeBeer, S. (2012) Manganese K-Edge X-Ray Absorption Spectroscopy as a Probe of the Metal-Ligand Interactions in Coordination Compounds, Inorg. Chem., 51, 680–687.
Chandrasekaran, P.; Stieber, S. C. E.; Collins, T. J.; Que, L.; Neese, F.; DeBeer, S. (2011) Prediction of high-valent iron K-edge absorption spectra by time-dependent Density Functional Theory, Dalton Trans., 40, 11070–11079.
Beckwith, M. A.; Roemelt, M.; Collomb, M. N.; Duboc, C.; Weng, T. C.; Bergmann, U.; Glatzel, P.; Neese, F.; DeBeer, S. (2011) Manganese K beta X-ray Emission Spectroscopy As a Probe of Metal-Ligand Interactions, Inorg. Chem, 50, 8397–8409.
Lee, N.; Petrenko, T.; Bergmann, U.; Neese, F.; DeBeer, S. (2010) Probing Valence Orbital Composition with Iron K beta X-ray Emission Spectroscopy, J. Am. Chem. Soc., 132, 9715–9727.
DeBeer-George, S.; Neese, F. (2010) Calibration of Scalar Relativistic Density Functional Theory for the Calculation of Sulfur K-Edge X-ray Absorption Spectra, Inorg. Chem, 49, 1849–1853.
DeBeer-George, S.; Petrenko, T.; Neese, F. (2008) Prediction of Iron- K-edge Absorption Spectra using Time-Dependent Density Functional Theory, J. Phys. Chem. A., 112, 12936–12943.
DeBeer-George, S.; Petrenko, T.; Neese, F. (2008) Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra, Inorg. Chim. Acta (60\(^{th}\) birthday issue of Prof. E.I. Solomon), 361, 965–972.
Applications that make use of include the following¶
Kruse, H.; Mladek, A.; Gkionis, K.; Hansen, A.; Grimme, S.; Sponer J. (2015) Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit, J. Chem. Theory Comput., 11, 4972.
Qu, Z.-W.; Hansen, A.; Grimme, S. (2015) Co-C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging?, J. Chem. Theory Comput., 11, 1037.
A. Hansen, A.; Bannwarth, C.; Grimme, S.; Petrović, P.; Werlé, C.; Djukic, J.-P. (2014) The Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’, ChemistryOpen, 3, 177.
Krewald, V.; Neese, F.; Pantazis, D. A. (2013) On the magnetic and spectroscopic properties of high-valent Mn\(_3\)CaO\(_4\) cubanes as structural units of natural and artificial water oxidizing catalysts, J. Am. Chem. Soc., 135, 5726–5739.
Kampa, M.; Pandelia, M.-E.; Lubitz, W.; van Gastel, M.; Neese, F. (2013) A Metal-Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution, J. Am. Chem. Soc., 135, 3915–3925.
Pandelia, M.-E.; Bykov, D.; Izsák, R.; Infossi, P.; Giudici-Orticoni, M.-T.; Bill, E.; Neese, F.; Lubitz, W. (2013) Electronic structure of the unique [4Fe-3S] cluster in O\(_2\)-tolerant hydrogenases characterized by Fe-57 Mossbauer and EPR spectroscopy, Proc. Natl. Acad. Sci. USA, 110, 483–488.
Atanasov, M.; Surawatanawong, P.; Wieghardt, K.; Neese, F. (2013) A theoretical study of zero-field splitting in Fe(IV)S\(_6\) (\(S\) = 1) and Fe(III)S\(_6\) (\(S\) = 1/2) core complexes, [Fe\(^\mathrm{IV}\)(Et\(_2\)dtc)\(_{3-n}\)(mnt)\(_n\)]\(^{(n-1)-}\) and [Fe\(^\mathrm{III}\)(Et\(_2\)dtc)\(_{3-n}\)(mnt)\(_n\)]\(^{n-}\) (\(n=0\), 1, 2, 3): The origin of the magnetic anisotropy, Coord. Chem. Rev., 257(1), 27–41.
Retegan, M.; Collomb, M.-N.; Neese, F.; Duboc, C. (2013) A combined high-field EPR and quantum chemical study on a weakly ferromagnetically coupled dinuclear Mn(III) complex. A complete analysis of the EPR spectrum beyond the strong coupling limit, Phys. Chem. Chem. Phys., 15, 223–234.
Zadrozny, J. M.; Atanasov, M.; Bryan, A. M.; Lin, C. Y.; Rekken, B. D.; Power, P. P.; Neese, F.; Long, J. R. (2013) Slow magnetization dynamics in a series of two-coordinate iron(II) complexes, Chem. Sci., 4, 125–138.
Weber, K.; Krämer, T.; Shafaat, H. S.; Weyhermüller, T.; Bill, E.; van Gastel, M.; Neese, F.; Lubitz, W. (2012) A Functional [NiFe]-Hydrogenase Model Compound That Undergoes Biologically Relevant Reversible Thiolate Protonation, J. Am. Chem. Soc., 134, 20745–20755.
Kampa, M.; Lubitz, W.; van Gastel, M.; Neese, F.; (2012) Computational study of the electronic structure and magnetic properties of the Ni-C state in [NiFe] hydrogenases including the second coordination sphere, J. Biol. Inorg. Chem., 17, 1269–1281.
Atanasov, M.; Comba, P.; Helmle, S.; Müller, D.; Neese, F. (2012) Zero-Field Splitting in a Series of Structurally Related Mononuclear Ni\(^{\mathrm{II}}\)-Bispidine Complexes, Inorg. Chem., 51, 12324–12335.
Shafaat, H. S.; Weber, K.; Petrenko, T.; Neese, F.; Lubitz, W. (2012) Key Hydride Vibrational Modes in [NiFe] Hydrogenase Model Compounds Studied by Resonance Raman Spectroscopy and Density Functional Calculations, Inorg. Chem., 51, 11787–11797.
Argirevic, T.; Riplinger, C.; Stubbe, J.; Neese, F.; Bennati, M. (2012) ENDOR Spectroscopy and DFT Calculations: Evidence for the Hydrogen-Bond Network Within \(\alpha\)2 in the PCET of E. coli Ribonucleotide Reductase, J. Am. Chem. Soc., 134, 17661–17670.
Albrecht, C.; Shi, L. L.; Perez, J. M.; van Gastel, M.; Schwieger, S.; Neese, F.; Streubel, R. (2012) Deoxygenation of Coordinated Oxaphosphiranes: A New Route to P=C Double-Bond Systems, Chem. Eur. J., 18, 9780–9783.
Maganas, D.; Krzystek, J.; Ferentinos, E.; Whyte, A. M.; Robertson, N.; Psycharis, V.; Terzis, A.; Neese, F.; Kyritsis, P. (2012) Investigating Magnetostructural Correlations in the Pseudooctahedral trans-[Ni\(^{\mathrm{II}}\){(OPPh\(_2\)) (EPPh\(_2\))N}\(_2\)(sol)\(_2\)] Complexes (E \(=\) S, Se; sol \(=\) DMF, THF) by Magnetometry, HFEPR, and ab Initio Quantum Chemistry, Inorg. Chem., 51, 7218–7231.
Ye, S. F.; Neese, F. (2012) How Do Heavier Halide Ligands Affect the Signs and Magnitudes of the Zero-Field Splittings in Halogenonickel(II) Scorpionate Complexes? A Theoretical Investigation Coupled to Ligand-Field Analysis, J. Chem. Theory Comput., 8, 2344–2351.
Nesterov, V.; Ozbolat-Schon, A.; Schnakenburg, G.; Shi, L. L.; Cangonul, A.; van Gastel, M.; Neese, F.; Streubel, R. (2012) An Unusal Case of Facile Non-Degenerate P-C Bond Making and Breaking, Chem. Asian J., 7, 1708–1712.
Bykov, D.; Neese, F. (2012) Reductive activation of the heme iron-nitrosyl intermediate in the reaction mechanism of cytochrome c nitrite reductase: a theoretical study, J. Biol. Inorg. Chem., 17, 741–760.
Lancaster, K. M.; Zaballa, M.E.; Sproules, S.; Sundararajan, M.; DeBeer, S.; Richards, J. H.; Vila, A. J.; Neese, F.; Gray, H. B. (2012) Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins, J. Am. Chem. Soc., 134, 8241–8253.
Benkhauser-Schunk, C.; Wezisla, B.; Urbahn, K.; Kiehne, U.; Daniels, J.; Schnakenburg, G.; Neese, F.; Lutzen, A. (2012) Synthesis, Chiral Resolution, and Absolute Configuration of Functionalized Troger’s Base Derivatives: Part II, ChemPlusChem, 77, 396–403.
Ye, S. F.; Riplinger, C.; Hansen, A.; Krebs, C.; Bollinger, J. M.; Neese, F. (2012) Electronic Structure Analysis of the Oxygen-Activation Mechanism by Fe\(^{\mathrm{II}}\)- and \(\alpha\)-Ketoglutarate (\(\alpha\)KG)-Dependent Dioxygenases, Chem. Eur. J., 18, 6555–6567.
Desrochers, P. J.; Sutton, C. A.; Abrams, M. L.; Ye, S. F.; Neese, F.; Telser, J.; Ozarowski, A.; Krzystek, J. (2012) Electronic Structure of Nickel(II) and Zinc(II) Borohydrides from Spectroscopic Measurements and Computational Modeling, Inorg. Chem., 51, 2793–2805.
Torres-Alacan, J.; Krahe, O.; Filippou, A. C.; Neese, F.; Schwarzer, D.; Vöhringer, P. (2012) The Photochemistry of [Fe\(^{\mathrm{III}}\)N\(_3\)(cyclam-ac)]PF\(_6\) at 266 nm, Chem. Eur. J., 18, 3043–3055.
Maekawa, M.; Römelt, M.; Daniliuc, C. G.; Jones, P. G.; White, P. S.; Neese, F.; Walter, M. D. (2012) Reactivity studies on [Cp\(^{\prime}\)MnX(thf)]\(_2\): manganese amide and polyhydride synthesis Chem. Sci., 3, 2972–2979.
Pantazis, D. A.; Ames, W.; Cox, N.; Lubitz, W.; Neese, F. (2012) Two interconvertible structures that explain the spectroscopic properties of the oxygen-evolving complex of photosystem II in the S\(_2\) state, Angew. Chem. Int. Ed., 51, 9935–9940. (selected as cover article and VIP paper)
Vennekate, H.; Schwarzer, D.; Torres-Alacan, J.; Krahe, O.; Filippou, A. C.; Neese, F.; Vöhringer, P. (2012) Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light, Phys. Chem. Chem. Phys., 14, 6165–6172.
Christian, G. J.; Ye, S.; Neese, F. (2012) Oxygen activation in extradiol catecholate dioxygenases – a density functional study, Chem. Sci., 3, 1600–1611.
Cowley, R. E.; Christian, G. J.; Brennessel, W. W.; Neese, F.; Holland, P. L. (2012) A Reduced (beta-Diketiminato)iron Complex with End-On and Side-On Nitriles: Strong Backbonding or Ligand Non-Innocence? Eur. J. Inorg. Chem., 479–483.
Thiessen, A.; Wettach, H.; Meerholz, K.; Neese, F.; Hoger, S.; Hertel, D. (2012) Control of electronic properties of triphenylene by substitution, Organic Electronics, 13, 71–83.
Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y. L.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. (2011) X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor, Science, 334, 974–977.
Ames, W.; Pantazis, D. A.; Krewald, V.; Cox, N.; Messinger, J.; Lubitz, W.; Neese, F. (2011) Theoretical Evaluation of Structural Models of the S\(_{2}\) State in the Oxygen Evolving Complex of Photosystem II: Protonation States and Magnetic Interactions, J. Am. Chem. Soc., 133, 19743–19757.
Antony, J.; Grimme, S.; Liakos, D. G.; Neese, F. (2011) Protein-Ligand Interaction Energies with Dispersion Corrected Density Functional Theory and High-Level Wave Function Based Methods, J. Phys. Chem. A, 115, 11210–11220.
Radoul, M.; Bykov, D.; Rinaldo, S.; Cutruzzola, F.; Neese, F.; Goldfarb, D. (2011) Dynamic Hydrogen-Bonding Network in the Distal Pocket of the Nitrosyl Complex of Pseudomonas aeruginosa cd(1) Nitrite Reductase, J. Am. Chem. Soc., 133, 3043–3055.
Liakos, D. G.; Neese, F. (2011) Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The Cu\(_{2}\)O\(_{2}^{2+}\) Core Revisited, J. Chem. Theory Comput., 7, 1511–1523.
Riplinger, C.; Neese, F. (2011) The Reaction Mechanism of Cytochrome P450 NO Reductase: A Detailed Quantum Mechanics/Molecular Mechanics Study, ChemPhysChem, 12, 3192–3203.
Maganas, D.; Sottini, S.; Kyritsis, P.; Groenen, E. J. J.; Neese, F. (2011) Theoretical Analysis of the Spin Hamiltonian Parameters in Co\(^{\mathrm{II}}\)S\(_{4}\) Complexes, Using Density Functional Theory and Correlated ab initio Methods, Inorg. Chem, 50, 8741–8754.
Surawatanawong, P.; Sproules, S.; Neese, F.; Wieghardt, K. (2011) Electronic Structures and Spectroscopy of the Electron Transfer Series Fe(NO)L\(_{2}^{z}\) (\(z=1+, 0, 1-, 2-, 3-\); L \(=\) Dithiolene), Inorg. Chem, 50, 12064–12074.
Cox, N.; Ames, W.; Epel, B.; Kulik, L. V.; Rapatskiy, L.; Neese, F.; Messinger, J.; Wieghardt, K.; Lubitz, W. (2011) Electronic Structure of a Weakly Antiferromagnetically Coupled Mn(II)Mn(III) Model Relevant to Manganese Proteins: A Combined EPR, \(^{55}\)Mn-ENDOR, and DFT Study, Inorg. Chem, 50, 8238–8251.
Rota, J. B.; Knecht, S.; Fleig, T.; Ganyushin, D.; Saue, T.; Neese, F.; Bolvin, H. (2011) Zero field splitting of the chalcogen diatomics using relativistic correlated wave-function methods, J. Chem. Phys., 135, 114106.
Atanasov, M.; Ganyushin, D.; Pantazis, D. A.; Sivalingam, K.; Neese, F. (2011) Detailed Ab Initio First-Principles Study of the Magnetic Anisotropy in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes, Inorg. Chem, 50, 7460–7477.
Cox, N.; Rapatskiy, L.; Su, J. H.; Pantazis, D. A.; Sugiura, M.; Kulik, L.; Dorlet, P.; Rutherford, A. W.; Neese, F.; Boussac, A.; Lubitz, W.; Messinger, J. (2011) Effect of Ca\(^{2+}\)/Sr\(^{2+}\) Substitution on the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II: A Combined Multifrequency EPR, \(^{55}\)Mn-ENDOR, and DFT Study of the S\(_{2}\) State, J. Am. Chem. Soc., 133, 3635–3648.
Maurice, R.; Sivalingam, K.; Ganyushin, D.; Guihery, N.; de Graaf, C.; Neese, F. (2011) Theoretical Determination of the Zero-Field Splitting in Copper Acetate Monohydrate, Inorg. Chem, 50, 6229–6236.
Su, J. H.; Cox, N.; Ames, W.; Pantazis, D. A.; Rapatskiy, L.; Lohmiller, T.; Kulik, L. V.; Dorlet, P.; Rutherford, A. W.; Neese, F.; Boussac, A.; Lubitz, W.; Messinger, J. (2011) The electronic structures of the S\(_{2}\) states of the oxygen-evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol, Biochim. Biophys. Acta-Bioenergetics, 1807, 829–840.
Bykov, D.; Neese, F. (2011) Substrate binding and activation in the active site of cytochrome c nitrite reductase: a density functional study, J. Biol. Inorg. Chem, 16, 417–430.
Gennari, M.; Orio, M.; Pecaut, J.; Bothe, E.; Neese, F.; Collomb, M. N.; Duboc, C. (2011) Influence of Mixed Thiolate/Thioether versus Dithiolate Coordination on the Accessibility of the Uncommon \(+\)I and \(+\)III Oxidation States for the Nickel Ion: An Experimental and Computational Study, Inorg. Chem, 50, 3707–3716.
Ye, S. F.; Neese, F. (2011) Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state, Proc. Natl. Acad. Sci. USA, 108, 1228–1233.
Gennari, M.; Pecaut, J.; DeBeer, S.; Neese, F.; Collomb, M. N.; Duboc, C. (2011) A Fully Delocalized Mixed-Valence Bis-\(\mu\)-(Thiolato) Dicopper Complex: A Structural and Functional Model of the Biological Cu(A) Center, Angew. Chem., Int. Ed., 50, 5661–5665.
Gennari, M.; Retegan, M.; DeBeer, S.; Pecaut, J.; Neese, F.; Collomb, M. N.; Duboc, C. (2011) Experimental and Computational Investigation of Thiolate Alkylation in Ni(II) and Zn(II) Complexes: Role of the Metal on the Sulfur Nucleophilicity, Inorg. Chem, 50, 10047–10055.
Atanasov, M.; Delley, B.; Neese, F.; Tregenna-Piggott, P. L.; Sigrist, M. (2011) Theoretical Insights into the Magnetostructural Correlations in Mn(3)-Based Single-Molecule Magnets, Inorg. Chem, 50, 2112–2124.
Neese, F.; Pantazis, D. A. (2011) What is not required to make a single molecule magnet, Faraday Discussions, 148, 229–238.
Lassalle-Kaiser, B.; Hureau, C.; Pantazis, D. A.; Pushkar, Y.; Guillot, R.; Yachandra, V. K.; Yano, J.; Neese, F.; Anxolabéhère-Mallart, E. (2010) Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation, Energy Environ. Sci., 3, 924–938.
Pantazis, D. A.; Krewald, V.; Orio, M.; Neese, F. (2010) Theoretical magnetochemistry of dinuclear manganese complexes: broken symmetry density functional theory investigation on the influence of bridging motifs on structure and magnetism, Dalton Trans., 39, 4959–4967.
Woertink, J. S.; Tian, L.; Maiti, D.; Lucas, H. R.; Himes, R. A.; Karlin, K. D.; Neese, F.; Wurtele, C.; Holthausen, M. C.; Bill, E.; Sundermeyer, J.; Schindler, S.; Solomon, E. I. (2010) Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State, Inorg. Chem, 49, 9450–9459.
McNaughton, R. L.; Roemelt, M.; Chin, J. M.; Schrock, R. R.; Neese, F.; Hoffman, B. M. (2010) Experimental and Theoretical EPR Study of Jahn–Teller-Active HIPTN(3)N MoL Complexes (L \(=\) N\(_{2}\), CO, NH\(_{3})\), J. Am. Chem. Soc., 132, 8645–8656.
Geng, C. Y.; Ye, S. F.; Neese, F. (2010) Analysis of Reaction Channels for Alkane Hydroxylation by Nonheme Iron(IV)-Oxo Complexes, Angew. Chem., Int. Ed., 49, 5717–5720.
Orio, M.; Jarjayes, O.; Kanso, H.; Philouze, C.; Neese, F.; Thomas, F. (2010) X-Ray Structures of Copper(II) and Nickel(II) Radical Salen Complexes: The Preference of Galactose Oxidase for Copper(II), Angew. Chem., Int. Ed., 49, 4989–4992.
Gennari, M.; Orio, M.; Pecaut, J.; Neese, F.; Collomb, M. N.; Duboc, C. (2010) Reversible Apical Coordination of Imidazole between the Ni(III) and Ni(II) Oxidation States of a Dithiolate Complex: A Process Related to the Ni Superoxide Dismutase, Inorg. Chem, 49, 6399–6401.
Ye, S. F.; Price, J. C.; Barr, E. W.; Green, M. T.; Bollinger, J. M.; Krebs, C.; Neese, F. (2010) Cryoreduction of the NO-Adduct of Taurine:alpha-Ketoglutarate Dioxygenase (TauD) Yields an Elusive FeNO Species, J. Am. Chem. Soc., 132, 4739–4751.
Maganas, D.; Grigoropoulos, A.; Staniland, S. S.; Chatziefthimiou, S. D.; Harrison, A.; Robertson, N.; Kyritsis, P.; Neese, F. (2010) Tetrahedral and Square Planar Ni(SPR\(_{2})_{2}\)N\(_{2}\) complexes, R \(=\) Ph & \(i\)Pr Revisited: Experimental and Theoretical Analysis of Interconversion Pathways, Structural Preferences, and Spin Delocalization, Inorg. Chem, 49, 5079–5093.
Anoop, A.; Thiel, W.; Neese, F. (2010) A Local Pair Natural Orbital Coupled Cluster Study of Rh Catalyzed Asymmetric Olefin Hydrogenation, J. Chem. Theory Comput., 6, 3137–3144.
Duboc, C.; Collomb, M. N.; Neese, F. (2010) Understanding the Zero-Field Splitting of Mononuclear Manganese(II) Complexes from Combined EPR Spectroscopy and Quantum Chemistry, Appl. Magn. Res., 37, 229–245.
Ye, S. F.; Neese, F. (2010) The Unusual Electronic Structure of Dinitrosyl Iron Complexes, J. Am. Chem. Soc., 132, 3646–3647.
Kochem, A.; Orio, M.; Jarjayes, O.; Neese, F.; Thomas, F. (2010) Unsymmetrical one-electron oxidized Ni(II)-bis(salicylidene) complexes: a protonation-induced shift of the oxidation site, Chem. Commun., 46, 6765–6767.
Ozbolat-Schon, A.; Bode, M.; Schnakenburg, G.; Anoop, A.; van Gastel, M.; Neese, F.; Streubel, R. (2010) Insights into the Chemistry of Transient P-Chlorophosphanyl Complexes, Angew. Chem., Int. Ed., 49, 6894–6898.
Vancoillie, S.; Chalupsky, J.; Ryde, U.; Solomon, E. I.; Pierloot, K.; Neese, F.; Rulisek, L. (2010) Multireference Ab Initio Calculations of g tensors for Trinuclear Copper Clusters in Multicopper Oxidases, J. Phys. Chem. B, 114, 7692–7702.
Grote, D.; Finke, C.; Kossmann, S.; Neese, F.; Sander, W. (2010) 3,4,5,6-Tetrafluorophenylnitren-2-yl: A Ground-State Quartet Triradical, Chem. Eur. J., 16, 4496–4506.
Ye, S. F.; Neese, F.; Ozarowski, A.; Smirnov, D.; Krzystek, J.; Telser, J.; Liao, J. H.; Hung, C. H.; Chu, W. C.; Tsai, Y. F.; Wang, R. C.; Chen, K. Y.; Hsu, H. F. (2010) Family of V(III)-Tristhiolato Complexes Relevant to Functional Models of Vanadium Nitrogenase: Synthesis and Electronic Structure Investigations by Means of High-Frequency and -Field Electron Paramagnetic Resonance Coupled to Quantum Chemical Computations, Inorg. Chem, 49, 977–988.
Hegele, P.; Santhamma, B.; Schnakenburg, G.; Frohlich, R.; Kataeva, O.; Nieger, M.; Kotsis, K.; Neese, F.; Dotz, K. H. (2010) Hydroquinoid Chromium Complexes Bearing an Acyclic Conjugated Bridge: Chromium-Templated Synthesis, Molecular Structure, and Haptotropic Metal Migration, Organometallics, 29, 6172–6185.
Ye, S. F.; Neese, F. (2010) Accurate Modeling of Spin-State Energetics in Spin-Crossover Systems with Modern Density Functional Theory, Inorg. Chem, 49, 772–774.
Orio, M.; Philouze, C.; Jarjayes, O.; Neese, F.; Thomas, F. (2010) Spin Interaction in Octahedral Zinc Complexes of Mono- and Diradical Schiff and Mannich Bases, Inorg. Chem, 49, 646–658.
Pantazis, D. A.; Orio, M.; Petrenko, T.; Zein, S.; Lubitz, W.; Messinger, J.; Neese, F. (2009) Structure of the Oxygen-Evolving Complex of Photosystem II: Information on the S\(_{2}\) state through Quantum Chemical Calculation of its Magnetic Properties. Phys. Chem. Chem. Phys., 11, 6788–6798.
Baffert, C.; Orio, M.; Pantazis, D. A.; Duboc, C.; Blackman, A.G.; Blondin, G.; Neese, F.; Deronzier,A.; Collomb, M-N. (2009) A trinuclear terpyridine frustrated spin system with a Mn\(^{\mathrm{IV}}_{3}\)O\(_{4}\) core: synthesis, physical characterization and quantum chemical modeling of its magnetic properties. Inorg. Chem., 48, 10281–10288.
Liakos, D.; Neese, F. (2009) A multiconfigurational ab initio study of the zero-field splitting in the di- and trivalent hexaquo-chromium complexes. Inorg. Chem., 48, 10572–10580.
Astashkin, A.V.; Klein, E.C.; Ganyushin, D.; Johnson.Winters, K.; Neese, F.; Kappler, U.; Enemark, J.H. (2009) Exchangeable oxygens in the vicinity of the molybdenum center of the high-pH form of sulfite oxidase and sulfite dehydrogenase. Phys. Chem. Chem. Phys., 11, 6733–6742.
Orio, M.; Pantazis, D. A.; Petrenko, T.; Neese, F. (2009) Magnetic and spectroscopic properties of mixed valence manganese(III,IV) dimers: a systematic study using broken symmetry density functional theory, Inorg. Chem., 48, 7251–7260.
Klein, E.L.; Astashkin, A.V.; Ganyushin, D.; Johnson-Winters, K.; Wilson, H.L.; Rajagopalan, K. V.; Neese, F.; Enemark, J.H. (2009) Direct Detection and Characterization of Chloride in the Active Site of the Low-pH Form of Sulfite Oxidase Using ESEEM Spectroscopy, Isotopic Labeling, and DFT Calculations, Inorg. Chem., 48(11), 4743–4752.
Vancoillie, S.; Rulisek, L.; Neese, F.; Pierloot, K. (2009) Theoretical description of the structure and magnetic properties of nitroxide-Cu(II)-nitroxide spin triads, J. Phys. Chem., 113, 6149–6157.
Cowley, R.E.; Bill, E.; Neese, F.; Brennessel,W.W.; Holland, P.L. (2009) Iron(II) Complexes With Redox-Active Tetrazene (RNNNNR) Ligands, Inorg. Chem., 48, 4828–4836.
Gansäuer, A.; Fleckhaus, A.; Lafon, A.; Okkel, M.; Anakuthil, A.; Kotsis, K.; Neese, F. (2009) Catalysis via Homolytic Substitutions with C-O and Ti-O Bonds: Oxidative Additions and Reductive Eliminations in Single Electron Steps. J. Am. Chem. Soc., 131, 16989–16999.
Ye, S.; Neese, F. (2009) Quantum Chemical Studies of C-H Activation Reactions by High-Valent Nonheme Iron Centers Curr. Op. Chem. Biol., 13(1), 89–98.
Krahe, O.; Neese, F.; Streubel, R. (2009) The quest for ring-opening of oxaphosphirane complexes: a coupled cluster and density functional study of CH\(_{3}\)PO isomers and their Cr(CO)\(_{5}\) complexes Chem. Eur. J., 15, 2594–2601.
Romain, S.; Duboc, C.; Neese, F.; Riviere, E.; Hanton, L. R.; Blackman, A. G.; Philouze, C.; Lepretre, J. C.; Deronzier, A.; Collomb, M. N. (2009) An Unusual Stable Mononuclear Mn(III) Bis-terpyridine Complex Exhibiting Jahn-Teller Compression: Electrochemical Synthesis, Physical Characterisation and Theoretical Study, Chem. Eur. J., 15, 980–988
Zein, S.; Neese, F. (2008) Ab initio and Coupled Perturbed DFT Calculation of Zero-Field Splittings in Mn(II) Transition Metal complexes. J. Phys. Chem. A, 112, 7976–7983.
Ye, S.; Tuttle, T.; Bill, E.; Gross, Z.; Thiel, W.; Neese, F. (2008) The Noninnocence of Iron Corroles: A combined Experimental and Quantum Chemical Study. Chem. Eur. J. (selected as very important paper), 34, 10839–10851.
Duboc, C.; Collomb, M.-N.; Pecaut, J.; Deronzier, A.; Neese, F. (2008) Definition of Magneto-Structural Correlations for the Mn(II) Ion. Chem. Eur. J., 21, 6498–6509.
Berry, J.F.; DeBeer-George, S.; Neese, F. (2008) Electronic Structure and Spectroscopy of “Superoxidized” Iron Centers in Model Systems: Theoretical and Experimental Trends. Phys. Chem. Chem. Phys., 10, 4361–4374.
Sander, W.; Grote, D.; Kossmann, S.; Neese, F. (2008) 2.3.5.6-Tetrafluorophenylnitren-4-yl: EPR Spectroscopic Characterization of a Quartet Ground State Nitreno Radical, J. Am. Chem. Soc., 130, 4396–4403.
Scheifele, Q.; Riplinger, C.; Neese, F.; Weihe, H.; Barra, A.L.; Jurany, F.; Podlesnyak, A.; Tregenna-Piggot, P.W.L. (2008) Spectroscopic and Theoretical Study of a Mononuclear Mn(III) Bioinorganic Complex Exhibiting a Compressed Jahn-Teller Octahedron, Inorg. Chem., 47, 439–447.
Zein, S.; Kulik, L.V.; Yano, J.; Kern, J.; Zouni, A.; Yachandra, V.K.; Lubitz, W.; Neese, F.; Messinger, J. (2008) Focussing the View on Nature’s Water Splitting Catalyst Phil. Trans. Roy. Soc. London B, 363, 1167–1177.
Zein, S.; Duboc, C.; Lubitz, W.; Neese, F. (2008) Theoretical Characterization of zero-Field Splittings in Mn(II) Complexes. Inorg. Chem., 47, 134–142.
Parker, D.J.; Hammond, D.; Davies, E.S.; Garner, C.D.; Benisvy, L.; McMaster, J.; Wilson, C.; Neese, F.; Bothe, E.; Bittl, R.; Teutloff, C. (2007) A stable H-bonded ortho-Thioether Phenoxyl-Radical: A Chemical and Spectroscopic Analogue of \(^{\bullet }\)Tyr\(_{272}\) in apo-Galactose Oxidase, J. Biol. Inorg. Chem. (Ed Stiefel memorial issue), 101, 1859–1864.
Chlopek, K.; Muresan, N.; Neese, F.; Wieghardt, K. (2007) Electronic Structures of Five-Coordinate Complexes of Iron Containing Zero, One, or Two \(\pi\) Radical Ligands: A Broken Symmetry Density Functional Theoretical Study, Chem. Eur. J., 13, 8391–8403.
Muresan, N.; Chlopek, K.; Weyhermüller, T.; Neese, F.; Wieghardt, K. (2007) Bis(\(\alpha\)-diimine)nickel Complexes: Molecular and Electronic Structure of Three Members of the Electron-Transfer Series [Ni(L)\(_{2}\)]\(^{z}\) (\(z = 0, 1+, 2+\)) (L \(=\) 2-Phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene). A Combined Experimental and Theoretical Study, Inorg. Chem., 46, 4905–4916.
Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. (2007) Joint Spectroscopic and Theoretical Investigations of Transition Metal Complexes Involving Non-Innocent Ligands. Dalton Trans., 1552 (selected for cover picture).
Sinnecker, S.; Svensen, N.; Barr, E.W.; Ye, S.; Bollinger, J.M.; Neese, F.; Krebs, C. (2007) Spectroscopic and Theoretical Evaluation of the Structure of the High-Spin Fe(IV)-Oxo Intermediates in Taurine:\(\alpha\)-Ketoglutarate Dioxygenase from Escherichia coli and its His99Ala Ligand Variant J. Am. Chem. Soc., 129, 6168–6179.
Duboc, C.; Phoeung, T; Zein, S.; Pécaut, J.; Collomb, M.-N.; Neese. F. (2007) Origin of the zero field splitting in mononuclear dihalide Mn(II) complexes: an investigation by multifrequency high-field EPR and density functional theory (DFT), Inorg. Chem., 46, 4905–4916.
DeBeer-George, S.; Petrenko, T.; Aliaga-Alcade, N.; Bill, E.; Mienert, B.; Sturhan, W.; Ming, Y.; Wieghardt, K.; Neese, F. (2007) Characterization of a Genuine Iron(V)Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations, J. Am. Chem. Soc., 129, 11053–11060.
Lehnert, N.M; Cornelissen, U.; Neese, F.; Ono, T.; Noguchi, Y.; Okamoto, K.-I.; Fujisawa, K. (2007) Synthesis and Spectroscopic Characterization of Cu(II)-Nitrite Complexes with Hydrotris(pyrazolyl)borate and Related Ligands. Inorg. Chem., 46, 3916–3933.
Carmieli, R.; Larsen, T.; Reed, G.H.; Zein, S.; Neese, F.; Goldfarb, D. (2007) The Catalytic Mn\(^{2+}\) Sites in the Enolase-Inhibitor Complex - Crystallography, Single Crystal EPR and DFT calculations. J. Am. Chem. Soc., 129, 4240–4252.
Kokatam, S.; Ray, K.; Pap, J.; Bill, E.; Geiger, W.E.; LeSuer, R.J.; Rieger, P.H.; Weyhermüller, T.; Neese, F.; Wieghardt, K. (2007) Molecular and Electronic Structure of Square Planar Gold Complexes Containing Two 1,2-di(4-tert-butylphenyl)ethylene-1,2-dithiolato Ligands: [Au(L)\(_{2}\)]\(^{1+/0/1-/2-}\). A Combined Experimental and Computational Study, Inorg. Chem., 46, 1100–1111.
Ray, K.; DeBeer-George, S.; Solomon, E.I.; Wieghardt, K.; Neese, F. (2007) Description of the Ground State Covalencies of the Bis(dithiolato)Transition Metal Complexes Using X-ray Absorption Spectral and Time-Dependent-Density-Functional Studies. Chem. Eur. Journal, 13(10), 2753 (selected for cover picture).
Chalupský, J.; Neese, F.; Solomon, E.I.; Ryde, U.; Rulíšek, L. (2006) Identification of intermediates in the reaction cycle of multicopper oxidases by quantum chemical calculations of spectroscopic parameters, Inorg. Chem., 45, 11051–11059.
Bart, S.C.; Chłopek, K.; Bill, E., Bouwkamp, B.W.; Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P.J. (2006) Electronic Structure of Bis(imino)pyridine Iron Dichloride, Monochloride and Neutral Ligand Complexes: A Combined Structural, Spectroscopic and Computational Study, J. Am. Chem. Soc., 128, 13901–13912.
Patra, A.K.; Bill, E.; Bothe, E.; Chlopek, K.; Neese, F.; Weyhermüller, T.; Stobie, K.; Ward, M.D.; McCleverty, J.A.; Wieghardt, K. (2006) The Electronic Structure of Mononuclear Bis(1,2-diaryl-1,2-ethylenedithiolate)iron Complexes Containing a Fifth Cyanide or Phosphite Ligand: A Combined Experimental and Computational Study, Inorg. Chem., 45, 7877–7890.
Berry, J.F.; Bill, E.; Bothe, E.; DeBeer-George, S.; Mienert, B.; Neese, F.; Wieghardt, K. (2006) An Octahedral Coordination Complex of Iron(VI) – One Step Ahead of Nature?, Science, 312, 1937–1941.
Petrenko, T.; Ray, K.; Wieghardt, K.; Neese, F. (2006) Vibrational Markers for the Open-Shell Character of Metal bis-Dithiolenes: An Infrared, resonance Raman and Quantum Chemical Study. J. Am. Chem. Soc., 128, 4422–4436.
Chłopek, K.; Bothe, E.; Neese, F.; Weyhermüller, T.; Wieghardt, K. (2006) The Molecular and Electronic Structures of Tetrahedral Complexes of Nickel and Cobalt Containing \(N,N^{\prime}\)-Disubstituted, Bulky \(o\)-Diiminobenzosemiquinonate(1-) \(\pi\)-Radical Ligands, Inorg. Chem., 45, 6298–6307.
Kababya, S.; Nelson. J.; Calle, C.; Neese, F.; Goldfarb, D. (2006) The electronic structure of bi-nuclear mixed valent copper azacryptates derived from integrated advanced EPR and DFT calculations. J. Am. Chem. Soc., 128, 2017–2029.
Berry, J.F.; Bill, E.; Neese, F.; Garcia-Serres, R.; Weyhermüller, T.; Wieghardt, K. (2006) Effect of N-Methylation of Macrocyclic Amine Ligands on the Spin State of Fe(III): A Tale of Two Fluoro Complexes. Inorg. Chem., 45, 2027–2037.
Kapre, R.; Ray, K.; Sylvestre, I.; Weyhermüller, T.; DeBeer-George, S.; Neese, F.; Wieghardt, K. (2006) The Molecular and Electronic Structure of Oxo-bis(benzene-1,2-dithiolato)chromate(V) Monoanions. A Combined Experimental and Density Functional Study. Inorg. Chem., 45, 3499–3509.
Zhu, W.; Marr, A.C.; Wang, Q.; Neese, F.; Spencer, J.E.; Blake, A.J.; Cooke, P.A.; Wilson, C.; Schröder, M. (2005) Modulation of the Electronic Structure and the Ni-Fe Distance in Heterobimetallic Models for the Active Site in [NiFe]Hydrogenase: Is there a Ni-Fe Bond? Proc. Natl. Acad. Sci. (USA), 102, 18280–18285.
Astashkin, A.V.; Neese, F.; Raitsimaring, A.M.; Cooney, J.J.A.; Bultman, E.; Enemark, J.H. (2005) Pulsed EPR investigation of systems modelling molybdenum enzymes: hyperfine and quadrupole parameters of oxo-\(^{17}\)O in [Mo\(^{17}\)O(SPh)\(_{4}\)]\(^{-}\), J. Am. Chem. Soc., 127, 16713–16722.
Benisvy, L.; Bittl, R.; Bothe, E.; Garner, C.D.; McMaster, J.; Ross, S.; Teutloff, C.; Neese, F. (2005) Phenoxyl Radicals Hydrogen-Bonded to Imidazolium – Analogues of Tyrosyl D\(^\bullet\) of Photosystem II: High-Field EPR and DFT Studies. Angew. Chem. Int. Ed., 44, 5314–5317.
Praneeth, V.K.K.; Neese, F.; Lehnert, N. (2005) Spin Density Distribution in Five- and Six-Coordinate Iron(II)-Porphyrin NO Complexes Evidenced by Magnetic Circular Dichroism Spectroscopy. Inorg. Chem., 44, 2570–2572.
Sinnecker, S.; Neese, F.; Lubitz, W. (2005) Dimanganese Catalase – Spectroscopic Parameters from Broken Symmetry Density Functional Theory of the Superoxidized Mn\(^{\mathrm{III}}\)/Mn\(^{\mathrm{IV}}\) state, J. Biol. Inorg. Chem., 10, 231–238.
Blanchard, S.; Neese, F.; Bothe, E.; Bill, E.; Weyhermüller, T.; Wieghardt, K. (2005) Square Planar vs. Tetrahedral Coordination in Diamagnetic Complexes of Nickel(II) Containing Two Bidentate \(\pi\) Radical Monoanions, Inorg. Chem., 44, 3636–3656.
Mader-Cosper, M.; Neese, F.; Astashkin, A.V.; Carducci, M.A.; Raitsimring, A.M.; Enemark, J.H. (2005) Determination of the Magnitude and Orientation of the g-Tensors for cis,trans-(L-N\(_{2}\)S\(_{2})\)Mo\(^{\mathrm{V}}\)OX (X\(=\)Cl, SCH\(_{2}\)Ph) by Single Crystal EPR and Molecular Orbital Calculations, Inorg. Chem., 44, 1290–1301.
Fouqeau, A.; Casida, M.E.; Lawson, L.M.; Hauser, A.; Neese, F. (2005) Comparison of Density Functionals for Energy and Structural Differences Between the High-[\(^{5}\)T\(_{2g}\): (t\(_{2g}^{4})\)(e\(_{g}^{2})\)] and Low-[\(^{1}\)A\(_{1g}\): (t\(_{2g}^{6})\)(e\(_{g}^{0})\)] Spin States of Iron(II) Coordination Compounds: II. Comparison of Results for More than Ten Modern Functionals with Ligand Field Theory and Ab Initio Results for Hexaquoferrous Dication, [Fe(H\(_{2}\)O)\(_{6}\)]\(^{2+}\) and Hexaminoferrous Dication [Fe(NH\(_{3})_{6}\)]\(^{2+}\), J. Chem. Phys., 122, 044110.
Aliaga-Alcade, N.; DeBeer George, S.; Bill, E.; Wieghardt, K.; Neese, F. (2005) The Geometric and Electronic Structure of [(Cyclam-acetato)Fe(N)]\(+\): a Genuine Iron(V) Species with Ground State Spin \(S = 1/2\). Angew. Chem. Int. Ed., 44, 2908–2912.
Bill, E.; Bothe, E.; Chaudhuri, P.; Chlopek, K.; Herebian, D.; Kokatam, S.; Ray, K. Weyhermüller, T.; Neese, F.; Wieghardt, K. (2004) Molecular and Electronic Structure of Four- and Five-Coordinate Cobalt Complexes Containing Two \(o\)-Phenylendiamine- or Two \(o\)-Aminophenol-Type Ligands at Various Oxidation Levels: An Experimental, Density Functional and Correlated ab initio Study. Chem. Eur. J., 11, 204–224.
Paine, T.; Bothe, W.; Bill, E.; Weyhermüller, T.; Slep, L.; Neese, F.; Chaudhuri, P. (2004) Nonoxo Vanadium(IV) and Vanadyl(V) Complexes with Mixed O,X,O-Donor Ligand (X \(=\) S, Se, P, PO), Inorg. Chem., 43, 7324–7338.
Baute, D.; Arieli, D.; Zimmermann, H.; Neese, F.; Weckhuysen, B.; Goldfarb, D. (2004) The Structure of Copper Histidine Complexes in Solution and in Zeolite Y: A Combined X- and W-Band Pulsed EPR/ENDOR and DFT Study, J. Am. Chem. Soc., 126, 11733–11745.
Garcia Serres R.; Grapperhaus, C.A.; Bothe, E.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. (2004) Structural, Spectroscopic and Computational Study of an Octahedral, Non-heme FeNO\(^{6,7,8}\) Series: [Fe(NO)(cyclam-ac)]\(^{2+/1+/0}\), J. Am. Chem. Soc., 126, 5138–5153.
Sinnecker, S.; Noodleman, L.; Neese, F.; Lubitz, W. (2004) Calculation of the EPR Parameters of a Mixed Valence Mn(III)/Mn(IV) Model Complex with Broken Symmetry Density Functional Theory. J. Am. Chem. Soc., 126, 2613–2622.
Sinnecker, S.; Neese, F.; Lubitz, W. (2004) Benzosemichinone Solvent Interactions. A Density Functional Study of Electric and Magnetic Properties for Probing Hydrogen Bond Strengths and Geometries. J. Am. Chem. Soc., 126, 3280–3290.
van Gastel, M.; Fichtner, C.; Neese, F.; Lubitz, W. (2005) EPR Experiments to Elucidate the Structure of the Ready and Unready States of the [NiFe] Hydrogenase of Desulfovibrio vulgaris Miyazaki F. Biochem. Soc. Trans., 33, 7–11.
van Gastel, M.; Lassman, G.; Lubitz, W.; Neese, F. (2004) The unusual EPR parameters of the cysteine radical: a DFT and correlated ab initio study J. Am. Chem. Soc., 126, 2237–2246.
Fouqueau, A.; Mer, S.; Casida, M.E.; Daku, L.M.L.; Hauser, A.; Mieva, T.; Neese, F. (2004) Comparison of Density Functionals for Energy and Structural Differences between the High [\(^{5}\)T\(_{2g}\): t\(_{2g}^{4}\)e\(_{g}^{2}\)] and Low [\(^{1}\)A\(_{1g}\): t\(_{2g}^{6}\)] Spin States of the Hexaquo-Ferrous Ion, [Fe(H\(_{2}\)O)\(_{6}\)]\(^{2+}\), J. Chem. Phys., 120, 9473–9486.
Slep, L.D.; Mijovilovich, A.; Meyer-Klaucke, W.; Weyhermüller, T.; Bill, E.; Bothe, E.; Neese, F.; Wieghardt, K. (2003) The Mixed-valent Fe\(^{\mathrm{IV}}(\mu\)-O)(\(\mu\)-carboxylato)\(_{2}\)Fe\(^{\mathrm{III}}\)\(^{3+}\) Core. J. Am. Chem. Soc., 125, 15554–15570.
Herebian, D.; Wieghardt, K.; Neese, F. (2003) Analysis and Interpretation of Metal-Radical Coupling in a Series of Square Planar Nickel Complexes. Correlated Ab Initio and Density Functional Investigation of [Ni(L\(^{\mathrm{ISQ}})_{2}\)] (L\(^{\mathrm{ISQ}}=\)3,5-di-tert-butyl-\(o\)diiminobenzosemquinone). J. Am. Chem. Soc., 125, 10997–11005.
Herebian, D.; Bothe, E.; Neese, F.; Weyhermüller, T.; Wieghardt, K. (2003) The Molecular and Electronic Structures of Bis(\(o\)-diiminobenzosemiquinonato)metal(II) Complexes (Ni, Pd, Pt), their Monocations and Anions, and their Dimeric Dications Containing Weak Metal-Metal Bonds. J. Am. Chem. Soc., 125, 9116–9128.
Ghosh, P.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. (2003) The non-Innocence of the Ligand Glyoxal-bis (2-mercaptoanil). The Electronic Structures of [Fe(gma)]\(_{2}\), [Fe(gma)(py)]\(^\bullet\)py, [Fe(gma)(CN)]\(^{1-/0}\), [Fe(gma)I], [Fe(gma)(PR\(_{3})_{n}\)] (\(n=1,2\)). Experimental and Theoretical Evidence for ‘Excited State’ Coordination. J. Am. Chem. Soc., 125, 1293–1308.
Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P.M.H.; Neese, F. (2002) Mechanism of the Six Electron Reduction of Nitrite to Ammonia by Cytochrome \(c\) Nitrite Reductase (CCNIR). J. Am. Chem. Soc., 124, 11737–11745.
Sun, X.; Chun, H.; Hildenbrand, K.; Bothe, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. (2002) \(o\)-Iminobenzosemiquinonato(1-) and \(o\)-Amidophenolato(2-) Complexes of Palladium(II) and Plantinum(II): A Combined Experimental and Density Functional Theoretical Study, Inorg. Chem., 41, 4295–4303.
Li, M.; Bonnet, D.; Bill, E.; Neese, F.; Weyhermüller, T.; Blum, N.; Sellmann, D.; Wieghardt, K. (2002) Tuning the Electronic Structure of Octahedral Iron Complexes [FeL(X)] (L \(=\) 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclo-nonane, X \(=\) Cl, CH\(_{3}\)O, CN, CO). The \(S=1/2 \Leftrightarrow S=3/2\) Spin-Equilibrium of [FeL\(^{Pr}\)(NO)]. Inorg. Chem., 41, 3444–3456.
Lehnert, N.; Neese, F.; Ho, R.Y.N.; Que Jr., L.; Solomon, E.I. (2002) Electronic Structure and Reactivity of Low-Spin Fe(III)-Hydroperoxo Complexes: Comparison to Activated Bleomycin. J. Am. Chem. Soc., 124, 10810–10822.
Grapperhaus, C.A.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. (2001) Electronic and Geometric Structure and Spectroscopy of a High Valent Manganese(V) Nitrido Complex. An Experimental and DFT Study. Inorg. Chem., 41, 4191–4198.
Neese, F., Solomon, E.I. (1998) Detailed Spectroscopic and Theoretical Studies on [Fe(EDTA)(O\(_{2})\)]\(^{3-}\): the Electronic Structure of the Side-On Ferric Peroxide Bond and its Relevance to Reactivity. J. Am. Chem. Soc., 120, 12829–12848.
Reviews of interest¶
Atanasov, M.; Aravena, D.; Suturina, E.; Bill, E.; Maganas, D.; Neese, F. (2015) First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets, Coord. Chem. Rev., 289, 177-214.
Neese, F.; Liakos, D. G.; Ye, S. F. (2011) Correlated Wavefunction Methods in Bioinorganic Chemistry, J. Biol. Inorg. Chem, 16, 821–829.
Neese, F.; Ames, W.; Christian, G.; Kampa, M.; Liakos, D. G.; Pantazis, D. A.; Roemelt, M.; Surawatanawong, P.; Ye, S. F. (2010) Dealing with Complexity in Open-Shell Transition Metal Chemistry from a Theoretical Perspective: Reaction Pathways, Bonding, Spectroscopy, and Magnetic Properties, Adv. Inorg. Chem., 62, 301–349.
Orio, M.; Pantazis, D. A.; Neese, F. (2009) Density Functional Theory, Photosynth. Res., 102, 443–453.
Neese, F. (2009), Density Functional Theory and EPR Spectroscopy: a guided tour. EPR Newsletter, 18(4), Pro & Contra section.
Neese, F. (2009) Prediction of Molecular Spectra and Molecular Properties with Density Functional Theory: from Fundamental Theory to Exchange Coupling. Coord. Chem. Rev., 253, 526–563.
Neese, F. (2009) Spin Hamiltonian Parameters from First Principle Calculations: Theory and Application. In: Hanseon, G.; Berliner, L. (Eds.) Biological Magnetic Resonance. Vol 28, pp 175–232.
Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. (2007) Joint Spectroscopic and Theoretical Investigations of Transition Metal Complexes Involving Non-Innocent Ligands. Dalton Trans., 1552. (selected for cover picture)
Kirchner, B.; Wennmohs, F.; Ye, S.; Neese, F. (2007) Theoretical Bioinorganic Chemistry: Electronic Structure Makes a Difference, Curr. Op. Chem. Biol., 11, 131–141.
Neese, F.; Petrenko, T.; Ganyushin, D.; Olbrich, G. (2007) Advanced Aspects of ab initio Theoretical Spectroscopy of Open-Shell Transition Metal Ions\(.\) Coord. Chem. Rev., 205, 288–327.
Ye, S.; Neese, F. (2006) Combined Quantum Chemical and Spectroscopic Studies on Transition Metal Complexes with Coordinating Radicals. Chemtracts (Special Volume on Computational Inorganic Chemistry), 19, 77–86.
Sinnecker, S.; Neese, F. (2006) Theoretical Bioinorganic Spectroscopy, Invited Chapter in the Series Current Topics in Chemistry, Editor M. Reiher, Springer, Heidelberg.
Neese, F. (2006) Quantum Chemical Approaches to Spin-Hamiltonian Parameters. Specialist Periodical Reports on EPR Spectroscopy Vol. 20, (Ed. B. Gilbert) Royal Scoiety Press.
Neese, F. (2006) A Critical Evaluation of DFT, including Time-Dependent DFT, Applied to Bioinorganic Chemistry. J. Biol. Inorg. Chem., (commentary on invitation), 11, 702–711.
Neese, F.; Munzarova, M.L. (2004) Historical Aspects of EPR Parameter Calculations. In: Kaupp, M.; Bühl, M.; Malkin, V. (Eds) Calculation of NMR and EPR Parameters. Theory and Applications. Wiley-VCH, pp 21–32.
Neese, F. (2004) Zero-Field Splitting. In: Kaupp, M.; Bühl, M.; Malkin, V. (Eds) Calculation of NMR and EPR Parameters. Theory and Applications. Wiley-VCH, pp 541–564.
Neese, F. (2004) Application of EPR Parameter Calculations in Bioinorganic Chemistry. In: Kaupp, M.; Bühl, M.; Malkin, V. (Eds) Calculation of NMR and EPR Parameters. Theory and Applications. Wiley-VCH, pp 581–591.
Neese, F. (2003) Quantum Chemical Calculations of Spectroscopic Properties of Metalloproteins and Model Compounds: EPR and Mössbauer Properties. Curr. Op. Chem. Biol., 7, 125–135.
Neese, F.; Solomon, E.I. (2003) Calculation and Interpretation of Spin-Hamiltonian Parameters in Transition Metal Complexes. Invited review, (Wiley series: Magnetoscience – From Molecules to Materials edited by J.S. Miller and M. Drillon), Volume IV, p 345–466.