7.52. Natural Bond Orbital (NBO) Analysis

A popular and useful method for population analysis is the natural bond orbital analysis due to Weinhold and co-workers. It is implemented in the NBO program which is distributed in older versions via the CCL list and in newer versions via the University of Wisconsin/Madison. Information about the NBO program can be found at http://www.chem.wisc.edu/~nbo7. In order to use it together with ORCA you need a version of the stand-alone executable. Starting with version 3.1.x ORCA can only be used with NBO6 or NBO7. To specify the NBO executable the environment variable NBOEXE=/full/name/of/nbo7-executable has to be set. As the NBO part of the interface is not independent of the integer data-type width (i4 or i8), the NBO executable which will be used together with ORCA has to be compiled using i4!

ORCA features two methods to interface with the NBO program: ! NBO keyword and the %nbo-block. The following example illustrates the use for formaldehyde:

#
# Test the interface to the NBO program
#
! RHF SVP NBO 

* xyz 0 1
  C     0.000000    0.000000    0.000000
  O     1.200000    0.000000    0.000000
  H    -0.550000    0.952628    0.000000
  H    -0.550000   -0.952628   -0.000000
*

This produces the following output:

Now starting NBO....

 *********************************** NBO 7.0 ***********************************
             N A T U R A L   A T O M I C   O R B I T A L   A N D
          N A T U R A L   B O N D   O R B I T A L   A N A L Y S I S
 ************************ development version (D000000) ************************
  (c) Copyright 1996-2018 Board of Regents of the University of Wisconsin System
      on behalf of the Theoretical Chemistry Institute.  All rights reserved.

          Cite this program [NBO 7.0.0 (15-Nov-2018)] as:

          NBO 7.0.  E. D. Glendening, J. K. Badenhoop, A. E. Reed,
          J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou,
          C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute,
          University of Wisconsin, Madison, WI (2018)

       /NPA    / : Natural Population Analysis
       /NBO    / : Natural Bond Orbital Analysis
       /AONBO  / : Checkpoint the AO to NBO transformation
       /ARCHIVE/ : Write the archive file to lfn47

 Job title:  ORCA Job: NBO_1


 NATURAL POPULATIONS:  Natural atomic orbital occupancies

  NAO Atom No lang   Type(AO)    Occupancy      Energy
 -------------------------------------------------------
   1    C  1  s      Cor( 1s)     1.99997     -11.34329
   2    C  1  s      Val( 2s)     1.01533      -0.17540
   3    C  1  s      Ryd( 3s)     0.00701       0.61376
   4    C  1  px     Val( 2p)     0.81697       0.08822
   5    C  1  px     Ryd( 3p)     0.01268       0.63900
   6    C  1  py     Val( 2p)     1.09795      -0.01243
   7    C  1  py     Ryd( 3p)     0.00055       0.80803
   8    C  1  pz     Val( 2p)     0.66003      -0.03464
   9    C  1  pz     Ryd( 3p)     0.00283       0.62824
  10    C  1  dxy    Ryd( 3d)     0.00576       2.75039
  11    C  1  dxz    Ryd( 3d)     0.00375       2.25746
  12    C  1  dyz    Ryd( 3d)     0.00000       2.08566
  13    C  1  dx2y2  Ryd( 3d)     0.00337       2.74845
  14    C  1  dz2    Ryd( 3d)     0.00114       2.40647

  15    O  2  s      Cor( 1s)     1.99998     -20.56485
  16    O  2  s      Val( 2s)     1.70725      -0.92198
  17    O  2  s      Ryd( 3s)     0.00171       1.55322
  18    O  2  px     Val( 2p)     1.62177      -0.42255
  19    O  2  px     Ryd( 3p)     0.00079       1.29654
  20    O  2  py     Val( 2p)     1.91529      -0.46844
  21    O  2  py     Ryd( 3p)     0.00383       1.41052
  22    O  2  pz     Val( 2p)     1.32984      -0.28626
  23    O  2  pz     Ryd( 3p)     0.00011       1.30080
  24    O  2  dxy    Ryd( 3d)     0.00213       3.26414
  25    O  2  dxz    Ryd( 3d)     0.00340       3.20490
  26    O  2  dyz    Ryd( 3d)     0.00000       2.98918
  27    O  2  dx2y2  Ryd( 3d)     0.00406       3.55008
  28    O  2  dz2    Ryd( 3d)     0.00119       3.17511

  29    H  3  s      Val( 1s)     0.88576       0.07107
  30    H  3  s      Ryd( 2s)     0.00298       0.41181
  31    H  3  px     Ryd( 2p)     0.00030       2.18260
  32    H  3  py     Ryd( 2p)     0.00159       2.49146
  33    H  3  pz     Ryd( 2p)     0.00002       1.85643

  34    H  4  s      Val( 1s)     0.88576       0.07107
  35    H  4  s      Ryd( 2s)     0.00298       0.41181
  36    H  4  px     Ryd( 2p)     0.00030       2.18260
  37    H  4  py     Ryd( 2p)     0.00159       2.49146
  38    H  4  pz     Ryd( 2p)     0.00002       1.85643


 Summary of Natural Population Analysis:

                                     Natural Population
             Natural    ---------------------------------------------
  Atom No    Charge        Core      Valence    Rydberg      Total
 --------------------------------------------------------------------
    C  1    0.37265      1.99997     3.59028    0.03709     5.62735
    O  2   -0.59134      1.99998     6.57415    0.01720     8.59134
    H  3    0.10934      0.00000     0.88576    0.00489     0.89066
    H  4    0.10934      0.00000     0.88576    0.00489     0.89066
 ====================================================================
 * Total * -0.00000      3.99995    11.93596    0.06408    16.00000

                                 Natural Population
 ---------------------------------------------------------
   Core                       3.99995 ( 99.9988% of    4)
   Valence                   11.93596 ( 99.4664% of   12)
   Natural Minimal Basis     15.93592 ( 99.5995% of   16)
   Natural Rydberg Basis      0.06408 (  0.4005% of   16)
 ---------------------------------------------------------

    Atom No         Natural Electron Configuration
 ----------------------------------------------------------------------------
      C  1      [core]2s( 1.02)2p( 2.57)3s( 0.01)3p( 0.02)3d( 0.01)
      O  2      [core]2s( 1.71)2p( 4.87)3d( 0.01)
      H  3            1s( 0.89)
      H  4            1s( 0.89)


 NATURAL BOND ORBITAL ANALYSIS:

                            Occupancies       Lewis Structure    Low   High
         Max    Occ     -------------------  -----------------   occ   occ
  Cycle  Ctr   Thresh    Lewis   non-Lewis     CR  BD  nC  LP    (L)   (NL)
 ============================================================================
    1     2     1.90    15.89671   0.10329      2   4   0   2     0      0
 ----------------------------------------------------------------------------

 Structure accepted: No low occupancy Lewis orbitals

 -------------------------------------------------------
   Core                      3.99995 ( 99.999% of   4)
   Valence Lewis            11.89676 ( 99.140% of  12)
  ==================      =============================
   Total Lewis              15.89671 ( 99.354% of  16)
  -----------------------------------------------------
   Valence non-Lewis         0.07835 (  0.490% of  16)
   Rydberg non-Lewis         0.02493 (  0.156% of  16)
  ==================      =============================
   Total non-Lewis           0.10329 (  0.646% of  16)
 -------------------------------------------------------


     (Occupancy)   Bond orbital / Coefficients / Hybrids
 ------------------ Lewis ------------------------------------------------------
   1. (1.99997) CR ( 1) C  1            s(100.00%)
                                         1.0000  0.0000  0.0000  0.0000  0.0000
                                         0.0000  0.0000  0.0000  0.0000  0.0000
                                         0.0000  0.0000  0.0000  0.0000
   2. (1.99998) CR ( 1) O  2            s(100.00%)
                                         1.0000  0.0000  0.0000  0.0000  0.0000
                                         0.0000  0.0000  0.0000  0.0000  0.0000
                                         0.0000  0.0000  0.0000  0.0000
   3. (1.98853) LP ( 1) O  2            s( 56.22%)p 0.78( 43.73%)d 0.00(  0.05%)
                                         0.0000  0.7496 -0.0170  0.6612  0.0069
                                         0.0000  0.0000  0.0000  0.0000  0.0000
                                         0.0000  0.0000 -0.0201  0.0100
   4. (1.91757) LP ( 2) O  2            s(  0.00%)p 1.00( 99.89%)d 0.00(  0.11%)
                                         0.0000  0.0000  0.0000 -0.0000 -0.0000
                                         0.9994 -0.0098  0.0000 -0.0000 -0.0330
                                        -0.0000  0.0000  0.0000 -0.0000
   5. (1.99996) BD ( 1) C  1- O  2
               ( 33.33%)   0.5773* C  1 s(  0.00%)p 1.00( 99.44%)d 0.01(  0.56%)
                                         0.0000 -0.0000 -0.0000  0.0000 -0.0000
                                        -0.0000  0.0000  0.9951 -0.0652 -0.0000
                                         0.0750  0.0000 -0.0000  0.0000
               ( 66.67%)   0.8165* O  2 s(  0.00%)p 1.00( 99.75%)d 0.00(  0.25%)
                                         0.0000 -0.0000  0.0000  0.0000 -0.0000
                                        -0.0000  0.0000  0.9987 -0.0090  0.0000
                                        -0.0505  0.0000  0.0000 -0.0000
   6. (1.99975) BD ( 2) C  1- O  2
               ( 32.59%)   0.5709* C  1 s( 32.18%)p 2.09( 67.35%)d 0.01(  0.46%)
                                         0.0000  0.5628  0.0714  0.8149  0.0973
                                        -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
                                        -0.0000  0.0000  0.0618 -0.0286
               ( 67.41%)   0.8211* O  2 s( 43.84%)p 1.27( 55.85%)d 0.01(  0.31%)
                                         0.0000  0.6615  0.0284 -0.7470 -0.0215
                                        -0.0000  0.0000 -0.0000 -0.0000  0.0000
                                         0.0000  0.0000  0.0490 -0.0270
   7. (1.99548) BD ( 1) C  1- H  3
               ( 56.63%)   0.7526* C  1 s( 33.98%)p 1.94( 65.86%)d 0.00(  0.16%)
                                         0.0000  0.5826 -0.0192 -0.3995 -0.0029
                                         0.7063 -0.0087  0.0000 -0.0000 -0.0318
                                        -0.0000  0.0000 -0.0180 -0.0153
               ( 43.37%)   0.6585* H  3 s( 99.79%)p 0.00(  0.21%)
                                         0.9989 -0.0095  0.0184 -0.0416  0.0000
   8. (1.99548) BD ( 1) C  1- H  4
               ( 56.63%)   0.7526* C  1 s( 33.98%)p 1.94( 65.86%)d 0.00(  0.16%)
                                         0.0000  0.5826 -0.0192 -0.3995 -0.0029
                                        -0.7063  0.0087 -0.0000  0.0000  0.0318
                                         0.0000  0.0000 -0.0180 -0.0153
               ( 43.37%)   0.6585* H  4 s( 99.79%)p 0.00(  0.21%)
                                         0.9989 -0.0095  0.0184  0.0416 -0.0000
 ---------------- non-Lewis ----------------------------------------------------
   9. (0.00000) BD*( 1) C  1- O  2
               ( 66.67%)   0.8165* C  1 s(  0.00%)p 1.00( 99.44%)d 0.01(  0.56%)
               ( 33.33%)  -0.5773* O  2 s(  0.00%)p 1.00( 99.75%)d 0.00(  0.25%)
  10. (0.00000) BD*( 2) C  1- O  2
               ( 67.41%)   0.8211* C  1 s( 32.18%)p 2.09( 67.35%)d 0.01(  0.46%)
               ( 32.59%)  -0.5709* O  2 s( 43.84%)p 1.27( 55.85%)d 0.01(  0.31%)
  11. (0.03918) BD*( 1) C  1- H  3
               ( 43.37%)   0.6585* C  1 s( 33.98%)p 1.94( 65.86%)d 0.00(  0.16%)
                                         0.0000 -0.5826  0.0192  0.3995  0.0029
                                        -0.7063  0.0087 -0.0000  0.0000  0.0318
                                         0.0000  0.0000  0.0180  0.0153
               ( 56.63%)  -0.7526* H  3 s( 99.79%)p 0.00(  0.21%)
                                        -0.9989  0.0095 -0.0184  0.0416 -0.0000
  12. (0.03918) BD*( 1) C  1- H  4
               ( 43.37%)   0.6585* C  1 s( 33.98%)p 1.94( 65.86%)d 0.00(  0.16%)
                                         0.0000 -0.5826  0.0192  0.3995  0.0029
                                         0.7063 -0.0087  0.0000 -0.0000 -0.0318
                                        -0.0000  0.0000  0.0180  0.0153
               ( 56.63%)  -0.7526* H  4 s( 99.79%)p 0.00(  0.21%)
                                        -0.9989  0.0095 -0.0184 -0.0416  0.0000
  13. (0.00969) RY ( 1) C  1            s( 29.83%)p 2.30( 68.57%)d 0.05(  1.60%)
                                         0.0000 -0.0565  0.5432 -0.1169  0.8198
                                         0.0000 -0.0000  0.0000 -0.0000 -0.0000
                                         0.0000  0.0000  0.1087 -0.0648
  14. (0.00517) RY ( 2) C  1            s(  0.00%)p 1.00(  9.56%)d 9.46( 90.44%)
                                         0.0000  0.0000 -0.0000  0.0000 -0.0000
                                         0.0465  0.3057  0.0000 -0.0000  0.9510
                                         0.0000  0.0000 -0.0000 -0.0000
  15. (0.00001) RY ( 3) C  1            s( 20.02%)p 0.82( 16.47%)d 3.17( 63.52%)
  16. (0.00000) RY ( 4) C  1            s(  0.00%)p 1.00( 90.64%)d 0.10(  9.36%)
  17. (0.00000) RY ( 5) C  1            s(  0.00%)p 1.00(100.00%)d 0.00(  0.00%)
  18. (0.00000) RY ( 6) C  1            s( 42.72%)p 0.35( 15.02%)d 0.99( 42.26%)
  19. (0.00000) RY ( 7) C  1            s(  0.00%)p 1.00(  0.56%)d99.99( 99.44%)
  20. (0.00000) RY ( 8) C  1            s(  0.00%)p 0.00(  0.00%)d 1.00(100.00%)
  21. (0.00000) RY ( 9) C  1            s(  7.29%)p 0.09(  0.66%)d12.63( 92.05%)
  22. (0.00368) RY ( 1) O  2            s(  0.00%)p 1.00( 98.96%)d 0.01(  1.04%)
                                         0.0000 -0.0000 -0.0000  0.0000  0.0000
                                         0.0064  0.9948 -0.0000  0.0000 -0.1018
                                         0.0000  0.0000 -0.0000  0.0000
  23. (0.00014) RY ( 2) O  2            s( 35.10%)p 1.44( 50.60%)d 0.41( 14.30%)
                                         0.0000 -0.0178  0.5922  0.0556 -0.7091
                                         0.0000 -0.0000 -0.0000  0.0000 -0.0000
                                         0.0000  0.0000  0.3336 -0.1780
  24. (0.00000) RY ( 3) O  2            s( 56.05%)p 0.25( 13.79%)d 0.54( 30.17%)
  25. (0.00000) RY ( 4) O  2            s(  0.00%)p 1.00(100.00%)d 0.00(  0.00%)
  26. (0.00000) RY ( 5) O  2            s(  0.00%)p 1.00(  1.14%)d86.35( 98.86%)
  27. (0.00000) RY ( 6) O  2            s(  0.00%)p 1.00(  0.25%)d99.99( 99.75%)
  28. (0.00000) RY ( 7) O  2            s(  0.00%)p 0.00(  0.00%)d 1.00(100.00%)
  29. (0.00000) RY ( 8) O  2            s(  6.72%)p 5.27( 35.42%)d 8.61( 57.85%)
  30. (0.00000) RY ( 9) O  2            s(  2.07%)p 0.30(  0.61%)d47.00( 97.32%)
  31. (0.00308) RY ( 1) H  3            s( 99.42%)p 0.01(  0.58%)
                                         0.0096  0.9970 -0.0710 -0.0281  0.0000
  32. (0.00002) RY ( 2) H  3            s(  0.22%)p99.99( 99.78%)
  33. (0.00002) RY ( 3) H  3            s(  0.00%)p 1.00(100.00%)
  34. (0.00001) RY ( 4) H  3            s(  0.57%)p99.99( 99.43%)
  35. (0.00308) RY ( 1) H  4            s( 99.42%)p 0.01(  0.58%)
                                         0.0096  0.9970 -0.0710  0.0281  0.0000
  36. (0.00002) RY ( 2) H  4            s(  0.22%)p99.99( 99.78%)
  37. (0.00002) RY ( 3) H  4            s(  0.00%)p 1.00(100.00%)
  38. (0.00001) RY ( 4) H  4            s(  0.57%)p99.99( 99.43%)


 NHO DIRECTIONALITY AND BOND BENDING (deviation from line of nuclear centers at
                                      the position of maximum hybrid amplitude)

         [Thresholds for printing:  angular deviation  >  1.0 degree]
                                    p- or d-character  > 25.0%
                                    orbital occupancy  >  0.10e

                        Line of Centers        Hybrid 1             Hybrid 2
                        ---------------  -------------------  ------------------
           NBO            Theta   Phi    Theta   Phi    Dev   Theta   Phi    Dev
 ===============================================================================
   3. LP ( 1) O  2          --     --     90.0    0.0   --      --     --    --
   4. LP ( 2) O  2          --     --     90.0   90.7   --      --     --    --
   5. BD ( 1) C  1- O  2   90.0    0.0     3.0    0.0  87.0   178.7  180.0  88.7


 SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

     Threshold for printing:   0.50 kcal/mol
                                                          E(2) E(NL)-E(L) F(L,NL)
      Donor (L) NBO              Acceptor (NL) NBO      kcal/mol   a.u.    a.u.
 ===============================================================================

 within unit  1
    3. LP ( 1) O  2            13. RY ( 1) C  1            8.58    1.40   0.098
    4. LP ( 2) O  2            11. BD*( 1) C  1- H  3     26.11    1.16   0.156
    4. LP ( 2) O  2            12. BD*( 1) C  1- H  4     26.11    1.16   0.156
    4. LP ( 2) O  2            14. RY ( 2) C  1            5.72    3.06   0.118
    4. LP ( 2) O  2            26. RY ( 5) O  2            0.73    3.75   0.047
    7. BD ( 1) C  1- H  3      12. BD*( 1) C  1- H  4      0.74    1.42   0.029
    7. BD ( 1) C  1- H  3      22. RY ( 1) O  2            2.25    2.12   0.062
    8. BD ( 1) C  1- H  4      11. BD*( 1) C  1- H  3      0.74    1.42   0.029
    8. BD ( 1) C  1- H  4      22. RY ( 1) O  2            2.25    2.12   0.062


 NATURAL BOND ORBITALS (Summary):

                                                     Principal Delocalizations
           NBO                 Occupancy    Energy   (geminal,vicinal,remote)
 ===============================================================================
 Molecular unit  1  (CH2O)
 ------ Lewis --------------------------------------
    1. CR ( 1) C  1             1.99997   -11.34329
    2. CR ( 1) O  2             1.99998   -20.56485
    3. LP ( 1) O  2             1.98853    -0.81352  13(v)
    4. LP ( 2) O  2             1.91757    -0.46975  11(v),12(v),14(v),26(g)
    5. BD ( 1) C  1- O  2       1.99996    -0.53505
    6. BD ( 2) C  1- O  2       1.99975    -1.23345
    7. BD ( 1) C  1- H  3       1.99548    -0.72703  22(v),12(g)
    8. BD ( 1) C  1- H  4       1.99548    -0.72703  22(v),11(g)
 ------ non-Lewis ----------------------------------
    9. BD*( 1) C  1- O  2       0.00000     0.20704
   10. BD*( 2) C  1- O  2       0.00000     0.95146
   11. BD*( 1) C  1- H  3       0.03918     0.69317
   12. BD*( 1) C  1- H  4       0.03918     0.69317
   13. RY ( 1) C  1             0.00969     0.58169
   14. RY ( 2) C  1             0.00517     2.58837
   15. RY ( 3) C  1             0.00001     1.75652
   16. RY ( 4) C  1             0.00000     0.96046
   17. RY ( 5) C  1             0.00000     0.64510
   18. RY ( 6) C  1             0.00000     1.49223
   19. RY ( 7) C  1             0.00000     2.24615
   20. RY ( 8) C  1             0.00000     2.08566
   21. RY ( 9) C  1             0.00000     2.49414
   22. RY ( 1) O  2             0.00368     1.39676
   23. RY ( 2) O  2             0.00014     1.56107
   24. RY ( 3) O  2             0.00000     2.18160
   25. RY ( 4) O  2             0.00000     1.30222
   26. RY ( 5) O  2             0.00000     3.27920
   27. RY ( 6) O  2             0.00000     3.20505
   28. RY ( 7) O  2             0.00000     2.98918
   29. RY ( 8) O  2             0.00000     2.69359
   30. RY ( 9) O  2             0.00000     3.12898
   31. RY ( 1) H  3             0.00308     0.41874
   32. RY ( 2) H  3             0.00002     2.57996
   33. RY ( 3) H  3             0.00002     1.85643
   34. RY ( 4) H  3             0.00001     2.06898
   35. RY ( 1) H  4             0.00308     0.41874
   36. RY ( 2) H  4             0.00002     2.57996
   37. RY ( 3) H  4             0.00002     1.85643
   38. RY ( 4) H  4             0.00001     2.06898
          -------------------------------
                 Total Lewis   15.89671  ( 99.3545%)
           Valence non-Lewis    0.07835  (  0.4897%)
           Rydberg non-Lewis    0.02493  (  0.1558%)
          -------------------------------
               Total unit  1   16.00000  (100.0000%)
              Charge unit  1    0.00000

 $CHOOSE
   LONE 2 2 END
   BOND D 1 2 S 1 3 S 1 4 END
 $END

 NBO analysis completed in 0.05 CPU seconds (0 wall seconds)
 Maximum scratch memory used by NBO was 297106 words (2.27 MB)
Stopping NBO...Storing NBOs: NBO_1.nbo

                                *** returned from  NBO  program ***

Thus, in this example the NBO analysis of formaldehyde shows that a single Lewis structure is dominant with single bonds between C and H, a double bond between C and O and two lone pairs at the oxygen – just as ordinary chemical arguments would imply. In addition, the program produces the four corresponding valence antibonds. The remaining components of the basis set span the “Rydberg” space and lead to semilocalized, orthogonal orbitals that are assigned to single atoms (Note the nomenclature: BD \(=\) bond, BD* \(=\) antibond, LP \(=\) lone pair, CR \(=\) core orbital, RY\(=\) Rydberg orbital). The NPA analysis shows a patially negative oxygen and partially positive carbon and hydrogen atoms.

Additionally, the NBO orbitals are stored in the ORCA .gbw file format as jobname.nbo. This file can be used for further analysis and usage with ORCA e.g. for plotting orbitals via orca_plot.

The NBO program has many additional features and analysis tools. The features that are implemented in ORCA can be controlled via the %nbo-block

%nbo
NBOKEYLIST    = "$NBO     ... $END"
DELKEYLIST    = "$DEL     ... $END"
COREKEYLIST   = "$CORE    ... $END"
NRTSTRKEYLIST = "$NRTSTR  ... $END"
NPEPAKEYLIST  = "$NPEPA   ... $END"
end

The syntax of the respective keylists is given by the NBO6.x/NBO7.x manual.

Specifying the single ! NBO keyword corresponds to the %nbo-block

%nbo
NBOKEYLIST    = "$NBO NBO NPA AONBO=C ARCHIVE $END"
end

The full set of features beyond those which can be give via the %nbo block can be accessed using the file FILE.47, which is generated by the NBO program. This is an ascii file that can be edited with a text editor. Add or remove keywords in the corresponding blocks as needed and call the gennbo program like

gennbo < FILE.47 >jobname.nboout
(a) π (a) π
(b) π - LP (b) π - LP
(c) π* (c) π*
(d) σ (d) σ
(e) σ - LP (e) σ - LP
(f) σ* (f) σ*

Fig. 7.63 Six NBOs of the H\(_2\)CO molecule. Shown are the occupied bonding \(\pi\) and \(\sigma\) orbitals (left) for C and O, the two oxygen lone pairs (middle) and the two \(\pi^*\) and \(\sigma^*\) antibonding orbitals (right).

The FILE.47 file looks like:

$GENNBO  NATOMS=4  NBAS=38  UPPER  BODM  FORMAT  $END
 $NBO  $END
 $COORD
 ORCA Job: check
     6    6       0.000000       0.000000       0.000000
     8    8       2.267671       0.000000       0.000000
     1    1      -1.039349       1.800206       0.000000
     1    1      -1.039349      -1.800206       0.000000
 $END
 $BASIS

If you have no need for this (rather large) file, then you have to delete it manually!

7.52.1. NBO Deletions

An advanced feature, which has been implemented via the ORCA-NBO interface, is the possibility of using deletions.

! RHF 3-21G BOHRS TightSCF

%nbo
nbokeylist="$nbo nbo npa aonbo=c archive $end"
delkeylist="$del lewis delete 1 element 3 11 $end"
end


*xyz 0 1
 C              1.4089705283        0.0210567401        0.0000000000
 N             -1.3645072652       -0.1355759321        0.0000000000
 H              1.9849776453        1.9986808971        0.0000000000
 H              2.1492280974       -0.9096841007        1.6818209547
 H              2.1492280974       -0.9096841007       -1.6818209547
 H             -2.0504340036        0.7268536543       -1.5583845544
 H             -2.0504340036        0.7268536543        1.5583845544
*

The DELKEYLIST provides NBO with the task to perform certain deletions of orbitals/interactions. Per deletion ORCA calculates a new Fock matrix on basis of an NBO density corresponding to the deletions:

Stopping NBO...Starting NBO again for $del instructions...

 LEWIS: Delete all non-Lewis NBOs
 Deletion of the following orbitals from the NBO Fock matrix:
   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28

 Orbital occupancies:

       Orbital                         No deletions  This deletion    Change
 ------------------------------------------------------------------------------
    1. CR ( 1) C  1                      1.99978        2.00000       0.00022
    2. CR ( 1) N  2                      1.99983        2.00000       0.00017
    3. LP ( 1) N  2                      1.97796        2.00000       0.02204
    4. BD ( 1) C  1- N  2                1.99846        2.00000       0.00154
    5. BD ( 1) C  1- H  3                1.99858        2.00000       0.00142
    6. BD ( 1) C  1- H  4                1.99406        2.00000       0.00594
    7. BD ( 1) C  1- H  5                1.99406        2.00000       0.00594
    8. BD ( 1) N  2- H  6                1.99440        2.00000       0.00560
    9. BD ( 1) N  2- H  7                1.99440        2.00000       0.00560
   10. BD*( 1) C  1- N  2                0.00009        0.00000      -0.00009
   11. BD*( 1) C  1- H  3                0.01567        0.00000      -0.01567
   12. BD*( 1) C  1- H  4                0.00763        0.00000      -0.00763
   13. BD*( 1) C  1- H  5                0.00763        0.00000      -0.00763
   14. BD*( 1) N  2- H  6                0.00424        0.00000      -0.00424
   15. BD*( 1) N  2- H  7                0.00424        0.00000      -0.00424
   16. RY ( 1) C  1                      0.00094        0.00000      -0.00094
   17. RY ( 2) C  1                      0.00034        0.00000      -0.00034
   18. RY ( 3) C  1                      0.00020        0.00000      -0.00020
   19. RY ( 4) C  1                      0.00001        0.00000      -0.00001
   20. RY ( 1) N  2                      0.00114        0.00000      -0.00114
   21. RY ( 2) N  2                      0.00044        0.00000      -0.00044
   22. RY ( 3) N  2                      0.00034        0.00000      -0.00034
   23. RY ( 4) N  2                      0.00001        0.00000      -0.00001
   24. RY ( 1) H  3                      0.00163        0.00000      -0.00163
   25. RY ( 1) H  4                      0.00079        0.00000      -0.00079
   26. RY ( 1) H  5                      0.00079        0.00000      -0.00079
   27. RY ( 1) H  6                      0.00117        0.00000      -0.00117
   28. RY ( 1) H  7                      0.00117        0.00000      -0.00117

 NEXT STEP:  Perform one SCF cycle to evaluate the energy of the new density
             matrix constructed from the deleted NBO Fock matrix.

 ------------------------------------------------------------------------------
Copying NBO density...
Calculating new Fock-Matrix...
Calculating Fock-Matrix...done!

New NBO energy via Fock-Matrix: -94.629937


Starting NBO again for $del/return energy instructions...

 ------------------------------------------------------------------------------
   Energy of deletion :        -94.629936711
     Total SCF energy :        -94.679444929
                          -------------------
        Energy change :          0.049508 a.u.,          31.067 kcal/mol
 ------------------------------------------------------------------------------

Multiple deletions can also be specified, as can be seen for this example. The output then also contains the additional energy values:

Starting NBO again for $del instructions...

 Deletion of the following NBO Fock matrix elements:
     3, 11;

 Orbital occupancies:

       Orbital                         No deletions  This deletion    Change
 ------------------------------------------------------------------------------
    1. CR ( 1) C  1                      1.99978        1.99978      -0.00000
    2. CR ( 1) N  2                      1.99983        1.99983      -0.00000
    3. LP ( 1) N  2                      1.97796        1.99348       0.01552
    4. BD ( 1) C  1- N  2                1.99846        1.99860       0.00015
    5. BD ( 1) C  1- H  3                1.99858        1.99845      -0.00014
    6. BD ( 1) C  1- H  4                1.99406        1.99404      -0.00002
    7. BD ( 1) C  1- H  5                1.99406        1.99404      -0.00002
    8. BD ( 1) N  2- H  6                1.99440        1.99450       0.00011
    9. BD ( 1) N  2- H  7                1.99440        1.99450       0.00011
   10. BD*( 1) C  1- N  2                0.00009        0.00008      -0.00000
   11. BD*( 1) C  1- H  3                0.01567        0.00042      -0.01525
   12. BD*( 1) C  1- H  4                0.00763        0.00780       0.00017
   13. BD*( 1) C  1- H  5                0.00763        0.00780       0.00017
   14. BD*( 1) N  2- H  6                0.00424        0.00424       0.00000
   15. BD*( 1) N  2- H  7                0.00424        0.00424       0.00000
   16. RY ( 1) C  1                      0.00094        0.00063      -0.00031
   17. RY ( 2) C  1                      0.00034        0.00034       0.00000
   18. RY ( 3) C  1                      0.00020        0.00032       0.00012
   19. RY ( 4) C  1                      0.00001        0.00002       0.00001
   20. RY ( 1) N  2                      0.00114        0.00115       0.00001
   21. RY ( 2) N  2                      0.00044        0.00044       0.00000
   22. RY ( 3) N  2                      0.00034        0.00034       0.00000
   23. RY ( 4) N  2                      0.00001        0.00001       0.00000
   24. RY ( 1) H  3                      0.00163        0.00092      -0.00072
   25. RY ( 1) H  4                      0.00079        0.00083       0.00005
   26. RY ( 1) H  5                      0.00079        0.00083       0.00005
   27. RY ( 1) H  6                      0.00117        0.00118       0.00000
   28. RY ( 1) H  7                      0.00117        0.00118       0.00000

 NEXT STEP:  Perform one SCF cycle to evaluate the energy of the new density
             matrix constructed from the deleted NBO Fock matrix.

 ------------------------------------------------------------------------------
Copying NBO density...
Calculating new Fock-Matrix...
Calculating Fock-Matrix...done!

New NBO energy via Fock-Matrix: -94.668383


Starting NBO again for $del/return energy instructions...

 ------------------------------------------------------------------------------
   Energy of deletion :        -94.668383268
     Total SCF energy :        -94.679444929
                          -------------------
        Energy change :          0.011062 a.u.,           6.941 kcal/mol
 ------------------------------------------------------------------------------

NOTE: Deletions are only implemented for SCF methods!

7.52.2. NBO for Post-HF Densities

NBO analysis can be performed on all methods producing a density. In some methods the density generation has to be specified explictly, e. g. for MP2 calculations this would be:

! MP2 3-21G TightSCF BOHRS NBO

%MP2 
density relaxed
end

*xyz 0 1
 C             1.4089705283        0.0210567401        0.0000000000
 N            -1.3645072652       -0.1355759321        0.0000000000
 H             1.9849776453        1.9986808971        0.0000000000
 H             2.1492280974       -0.9096841007        1.6818209547
 H             2.1492280974       -0.9096841007       -1.6818209547
 H            -2.0504340036        0.7268536543       -1.5583845544
 H            -2.0504340036        0.7268536543        1.5583845544
*

The output will contain both the NBO analysis of the SCF density as well as of the MP2 relaxed density. An NBO analysis of a density generated by the MDCI module can be specified as follows:

! CISD 3-21G TightSCF BOHRS NBO

%mdci
    density linearized
end

*xyz 0 1
 C        1.4089705283        0.0210567401        0.0000000000
 N       -1.3645072652       -0.1355759321        0.0000000000
 H        1.9849776453        1.9986808971        0.0000000000
 H        2.1492280974       -0.9096841007        1.6818209547
 H        2.1492280974       -0.9096841007       -1.6818209547
 H       -2.0504340036        0.7268536543       -1.5583845544
 H       -2.0504340036        0.7268536543        1.5583845544
*

Again, the output will contain both the NBO analysis of the SCF density as well es of the CISD linearized density.

7.52.3. Natural Chemical Shielding Analysis (NCS)

For closed-shell calculations of NMR chemical shielding at the SCF level (see sections NMR Chemical Shifts and EPR and NMR properties), the NCS analysis can be requested by adding NCS to the NBOKEYLIST. The NCS keyword accepts the arguments U, I, CSA, XYZ, and MO to analyze the “unperturbed”, “induced”, anisotropic, Cartesian, and canonical MO contributions to the shielding tensors, respectively, as well as a decimal number for the printing threshold (in ppm). For more information, consult the NBO manual and the original publication.[113]

! PBE def2-TZVP NMR
%nbo
  NBOKeyList = "$NBO NCS=0.01,I,U,XYZ $END"
end
* xyz 0 1
  H     0.00     0.00     0.00
  C     1.06     0.00     0.00
  N     2.23     0.00     0.00
*
Summary of isotropic NMR chemical shielding
 Total Lewis (L) and non-Lewis (NL) contributions: (ppm)

        NBO           H  1    C  2    N  3
 ---------------    ------- ------- -------
   1.  C 2(cr)   L    -0.18  200.26    0.18
                 NL   -0.02    0.02    0.00
   2.  N 3(cr)   L    -0.03   -0.12  235.18
                 NL    0.00    0.01    0.02
   3.  N 3(lp)   L     1.02  -33.00 -151.92
                 NL   -1.04    1.81   12.18
   4.  H 1- C 2  L    25.75  -49.28  -20.30
                 NL   -1.24    6.10    2.26
   5.  C 2- N 3  L     2.29   15.40   13.66
                 NL    0.02    0.00   -0.00
   6.  C 2- N 3  L     2.29   15.40   13.66
                 NL    0.02    0.00   -0.00
   7.  C 2- N 3  L     0.46  -77.94 -151.00
                 NL    0.05   -4.41    0.95
 ---------------    ------- ------- -------
           Lewis      31.59   70.70  -60.53
       non-Lewis      -2.21    3.53   15.42
 ---------------    ------- ------- -------
           Total      29.38   74.23  -45.11