6. Running Typical Calculations¶
Before entering the detailed documentation of the various features of ORCA it is instructive to provide a chapter that shows how “typical” tasks may be performed. This should make it easier for the user to get started on the program and not get lost in the details of how-to-do-this or how-to-do-that. We hope that the examples are reasonably intuitive.
- 6.1. Single Point Energies and Gradients
- 6.1.1. Hartree-Fock
- 6.1.2. MP2
- 6.1.2.1. MP2 and RI-MP2 Energies
- 6.1.2.2. Frozen Core Options
- 6.1.2.3. Orbital Optimized MP2 Methods
- 6.1.2.4. MP2 and RI-MP2 Gradients
- 6.1.2.5. MP2 Properties, Densities and Natural Orbitals
- 6.1.2.6. Explicitly correlated MP2 calculations
- 6.1.2.7. Local MP2 calculations
- 6.1.2.8. Local MP2 derivatives
- 6.1.3. Coupled-Cluster and Coupled-Pair Methods
- 6.1.3.1. Basics
- 6.1.3.2. Coupled-Cluster Densities
- 6.1.3.3. Static versus Dynamic Correlation
- 6.1.3.4. Basis Sets for Correlated Calculations. The case of ANOs.
- 6.1.3.5. Automatic extrapolation to the basis set limit
- 6.1.3.6. Explicitly Correlated MP2 and CCSD(T) Calculations
- 6.1.3.7. Frozen Core Options
- 6.1.3.8. Local Coupled Pair and Coupled-Cluster Calculations
- 6.1.3.9. Cluster in molecules (CIM)
- 6.1.3.10. Arbitrary Order Coupled-Cluster Calculations
- 6.1.4. Density Functional Theory
- 6.1.4.1. Standard Density Functional Calculations
- 6.1.4.2. DFT Calculations with RI
- 6.1.4.3. Hartree–Fock and Hybrid DFT Calculations with RIJCOSX
- 6.1.4.4. Hartree–Fock and Hybrid DFT Calculations with RI-JK
- 6.1.4.5. DFT Calculations with Second Order Perturbative Correction (Double-Hybrid Functionals)
- 6.1.4.6. DFT Calculations with Atom-pairwise Dispersion Correction
- 6.1.4.7. DFT Calculations with Range-Separated Hybrid Functionals
- 6.1.4.8. DFT Calculations with Range-Separated Double Hybrid Functionals
- 6.1.5. Quadratic Convergence
- 6.1.6. Counterpoise Correction
- 6.1.7. Complete Active Space Self-Consistent Field Method
- 6.1.7.1. Introduction
- 6.1.7.2. A simple Example
- 6.1.7.3. Starting Orbitals
- 6.1.7.4. CASSCF and Symmetry
- 6.1.7.5. RI, RIJCOSX and RIJK approximations for CASSCF
- 6.1.7.6. Robust Convergence with TRAH-CASSCF
- 6.1.7.7. Breaking Chemical Bonds
- 6.1.7.8. Excited States
- 6.1.7.9. CASSCF Natural Orbitals as Input for Coupled-Cluster Calculations
- 6.1.7.10. Large Scale CAS-SCF calculations using ICE-CI
- 6.1.8. N-Electron Valence State Perturbation Theory (NEVPT2)
- 6.1.9. Complete Active Space Perturbation Theory: CASPT2 and CASPT2-K
- 6.1.10. 2nd order Dynamic Correlation Dressed Complete Active Space method (DCD-CAS(2))
- 6.1.11. Full Configuration Interaction Energies
- 6.1.12. Efficient Calculations with Atomic Natural Orbitals
- 6.1.13. Local-SCF Method
- 6.1.14. Adding finite electric field
- 6.2. SCF Stability Analysis
- 6.3. Geometry Optimizations, Surface Scans, Transition States, MECPs, Conical Intersections, IRC, NEB
- 6.3.1. Geometry Optimizations
- 6.3.2. Numerical Gradients
- 6.3.3. Some Notes and Tricks
- 6.3.4. Initial Hessian for Minimization
- 6.3.5. Coordinate Systems for Optimizations
- 6.3.6. Constrained Optimizations
- 6.3.7. Constrained Optimizations for Molecular Clusters (Fragment Optimization)
- 6.3.8. Adding Arbitrary Wall Potentials
- 6.3.9. Relaxed Surface Scans
- 6.3.10. Multiple XYZ File Scans
- 6.3.11. Transition States
- 6.3.12. MECP Optimization
- 6.3.13. Conical Intersection Optimization
- 6.3.14. Constant External Force - Mechanochemistry
- 6.3.15. Intrinsic Reaction Coordinate
- 6.3.16. Printing Hessian in Internal Coordinates
- 6.3.17. Using model Hessian from previous calculations
- 6.3.18. Geometry Optimizations using the L-BFGS optimizer
- 6.3.19. Nudged Elastic Band Method
- 6.4. GOAT: global geometry optimization and ensemble generator
- 6.4.1. GOAT simple usage example - Histidine
- 6.4.2. Understanding the output
- 6.4.3. The final ensemble
- 6.4.4. GOAT-ENTROPY: expanding ensemble completeness by maximizing entropy
- 6.4.5. More on the \(\Delta S_{\rm conf}\)
- 6.4.6. GOAT-EXPLORE: global minima of atomic clusters or topology-free free PES searches
- 6.4.7. GOAT-REACT: an algorithm for automatic reaction pathway exploration
- 6.4.8. Some general observations
- 6.4.9. Basic keyword list
- 6.5. Vibrational Frequencies
- 6.6. Excited States Calculations
- 6.6.1. Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT
- 6.6.1.1. General Use
- 6.6.1.2. Spin-Flip
- 6.6.1.3. Population analysis
- 6.6.1.4. Use of TD-DFT for the Calculation of X-ray Absorption Spectra
- 6.6.1.5. Excited State Geometry Optimization
- 6.6.1.6. Doubles Correction
- 6.6.1.7. Spin-orbit coupling
- 6.6.1.8. Transient spectra
- 6.6.1.9. Non-adiabatic coupling matrix elements
- 6.6.1.10. Numerical non-adiabatic coupling matrix elements
- 6.6.1.11. Restricted Open-shell CIS
- 6.6.2. Excited States for Open-Shell Molecules with CASSCF Linear Response (MC-RPA)
- 6.6.3. Excited States with EOM-CCSD
- 6.6.4. Excited States with ADC2
- 6.6.5. Excited States with STEOM-CCSD
- 6.6.6. Excited States with IH-FSMR-CCSD
- 6.6.7. Excited States with PNO based coupled cluster methods
- 6.6.8. Excited States with DLPNO based coupled cluster methods
- 6.6.9. Excited States with DeltaSCF
- 6.6.1. Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT
- 6.7. Multireference Configuration Interaction and Pertubation Theory
- 6.7.1. Introductory Remarks
- 6.7.2. A Tutorial Type Example of a MR Calculation
- 6.7.3. Excitation Energies between Different Multiplicities
- 6.7.4. Correlation Energies
- 6.7.5. Thresholds
- 6.7.6. Energy Differences - Bond Breaking
- 6.7.7. Energy Differences - Spin Flipping
- 6.7.8. Potential Energy Surfaces
- 6.7.9. Multireference Systems - Ozone
- 6.7.10. Size Consistency
- 6.7.11. Efficient MR-MP2 Calculations for Larger Molecules
- 6.7.12. Keywords
- 6.8. MR-EOM-CC: Multireference Equation of Motion Coupled-Cluster
- 6.9. Solvation
- 6.10. ORCA SOLVATOR: Automatic Placement of Explicit Solvent Molecules
- 6.11. Relativistic Calculations
- 6.12. Calculation of Properties
- 6.12.1. Population Analysis and Related Things
- 6.12.2. Absorption and Fluorescence Bandshapes using
ORCA_ASA
- 6.12.3. IR/Raman Spectra, Vibrational Modes and Isotope Shifts
- 6.12.4. Thermochemistry
- 6.12.5. Anharmonic Analysis and Vibrational Corrections using VPT2/GVPT2 and
orca_vpt2
- 6.12.6. Electrical Properties
- 6.12.7. NMR Chemical Shifts
- 6.12.8. NMR Spin-Spin Coupling Constants
- 6.12.9. Hyperfine and Quadrupole Couplings
- 6.12.10. The EPR g-Tensor and the Zero-Field Splitting Tensor
- 6.12.11. Mössbauer Parameters
- 6.12.12. Broken-Symmetry Wavefunctions and Exchange Couplings
- 6.13. Local Energy Decomposition
- 6.14. The Hartree-Fock plus London Dispersion (HFLD) method for the study of Noncovalent Interactions
- 6.15. ORCA MM Module
- 6.15.1. ORCA Forcefield File
- 6.15.1.1. How to generate the ORCA Forcefield File
- 6.15.1.1.1. Conversion from psf or prmtop files to ORCAFF.prms: convff
- 6.15.1.1.2. Divide a forcefield file: splitff
- 6.15.1.1.3. Merge forcefield files: mergeff
- 6.15.1.1.4. Repeat forcefield files: repeatff
- 6.15.1.1.5. Divide a forcefield file: splitpdb
- 6.15.1.1.6. Merge PDB files: mergepdb
- 6.15.1.1.7. Create simple force field: makeff
- 6.15.1.1.8. Get standard hydrogen bond lengths: getHDist
- 6.15.1.1.9. Create ORCAFF.prms file for IONIC-CRYSTAL-QMMM
- 6.15.1.1. How to generate the ORCA Forcefield File
- 6.15.2. Speeding Up Nonbonded Interaction Calculation
- 6.15.3. Rigid Water
- 6.15.4. Available Keywords for the MM module
- 6.15.1. ORCA Forcefield File
- 6.16. ORCA Multiscale Implementation
- 6.16.1. General Settings and Input Structure
- 6.16.1.1. Overview on Combining Multiscale Features with other ORCA Features
- 6.16.1.2. Overview on Basic Aspects of the Multiscale Feature
- 6.16.1.3. QM Atoms
- 6.16.1.4. Active and Non-Active Atoms - Optimization, Frequency Calculation, Molecular Dynamics and Rigid MM Water
- 6.16.1.5. Forcefield Input
- 6.16.1.6. QM-MM, QM-QM2 and QM2-MM Boundary
- 6.16.1.7. Embedding Types
- 6.16.2. Additive QMMM
- 6.16.3. ONIOM Methods
- 6.16.4. CRYSTAL-QMMM
- 6.16.5. Additional Keywords
- 6.16.1. General Settings and Input Structure
- 6.17. QM/MM via Interfaces to ORCA
- 6.18. Excited State Dynamics
- 6.18.1. Absorption Spectrum
- 6.18.2. Fluorescence Rates and Spectrum
- 6.18.3. Phosphorescence Rates and Spectrum
- 6.18.4. Intersystem Crossing Rates (unpublished)
- 6.18.5. Internal Conversion Rates (unpublished)
- 6.18.6. Resonant Raman Spectrum
- 6.18.7. ESD and STEOM-CCSD or other higher level methods - the APPROXADEN option
- 6.18.8. Circularly Polarized Spectroscopies
- 6.18.9. Magnetic Circular Dichroism (unpublished)
- 6.18.10. Tips, Tricks and Troubleshooting
- 6.19. The ORCA DOCKER: An Automated Docking Algorithm
- 6.20. Compound Methods