7. Detailed Documentation¶
- 7.1. The SHARK Integral Package and Task Driver
- 7.2. More on Coordinate Input
- 7.3. Details on the numerical integration grids
- 7.4. Choice of Computational Model
- 7.4.1. Features Common to All Calculations
- 7.4.2. Density Functional Calculations
- 7.4.2.1. Choice of Functional
- 7.4.2.2. LibXC Functionals
- 7.4.2.3. Using the RI-J Approximation to the Coulomb Part
- 7.4.2.4. The Split-RI-J Coulomb Approximation
- 7.4.2.5. Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJONX)
- 7.4.2.6. Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJCOSX)
- 7.4.2.7. COSX Grid and Convergence Issues
- 7.4.2.8. Treatment of Dispersion Interactions with DFT-D3
- 7.4.2.9. DFT Calculations with the Non-Local, Density Dependent Dispersion Correction (VV10): DFT-NL
- 7.4.2.10. DFT and HF Calculations with the Geometrical Counterpoise Correction: gCP
- 7.4.2.11. HF-3c: Hartree-Fock with three corrections
- 7.4.2.12. PBEh-3c: A PBE hybrid density functional with small AO basis set and two corrections
- 7.4.2.13. \(r^2\)SCAN-3c: A robust “Swiss army knife” composite electronic-structure method
- 7.4.2.14. \(\omega\)B97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-\(\zeta\) basis set
- 7.4.3. Semiempirical Methods
- 7.5. Choice of Basis Set
- 7.5.1. Built-in Basis Sets
- 7.5.2. Automatic generation of auxiliary basis sets
- 7.5.3. Assigning or Adding Basis Functions to an Element
- 7.5.4. Assigning or Adding Basis Functions to Individual Atoms
- 7.5.5. Assigning Basis Sets and ECPs to Fragments
- 7.5.6. Reading Orbital and Auxiliary Basis Sets from a File
- 7.5.7. Advanced Specification of Effective Core Potentials
- 7.5.8. Embedding Potentials
- 7.5.9. Linear Dependence
- 7.6. Choice of Initial Guess and Restart of SCF Calculations
- 7.6.1. AutoStart feature
- 7.6.2. One Electron Matrix Guess
- 7.6.3. Basis Set Projection
- 7.6.4. PModel Guess
- 7.6.5. Hückel and PAtom Guesses
- 7.6.6. Restarting SCF Calculations
- 7.6.7. Changing the Order of Initial Guess MOs and Breaking the Initial Guess Symmetry
- 7.6.8. Automatically Breaking of the Initial Guess Symmetry
- 7.6.9. Calculating only the energy of an input density
- 7.7. SCF Convergence
- 7.7.1. Convergence Tolerances
- 7.7.2. Dynamic and Static Damping
- 7.7.3. Level Shifting
- 7.7.4. Direct Inversion in Iterative Subspace (DIIS)
- 7.7.5. An alternative DIIS algorithm: KDIIS
- 7.7.6. Approximate Second Order SCF (SOSCF)
- 7.7.7. Trust-Region Augmented Hessian (TRAH) SCF
- 7.7.8. Finite Temperature HF/KS-DFT
- 7.8. Choice of Wavefunction and Integral Handling
- 7.9. DeltaSCF: Converging to Arbitrary Single-Reference Wavefunctions
- 7.10. CP-SCF Options
- 7.11. SCF Stability Analysis
- 7.12. Frozen Core Options
- 7.13. The Second Order Many Body Pertubation Theory Module (MP2)
- 7.13.1. Standard MP2
- 7.13.2. RI-MP2
- 7.13.3. “Double-Hybrid” Density Functional Theory
- 7.13.4. Orbital Optimized MP2
- 7.13.5. Regularized MP2 and RI-MP2
- 7.13.6. RIJCOSX-RI-MP2 Gradients
- 7.13.7. MP2 and RI-MP2 Second Derivatives
- 7.13.8. RI-MP2 and Double-Hybrid DFT Response Properties
- 7.13.9. Local MP2
- 7.14. The Single Reference Correlation Module
- 7.15. The Complete Active Space Self-Consistent Field (CASSCF) Module
- 7.16. CASSCF Linear Response
- 7.17. Interface to SINGLE_ANISO module
- 7.18. Interface to POLY_ANISO module
- 7.19. N-Electron Valence State Pertubation Theory
- 7.19.1. RI, RIJK and RIJCOSX Approximation
- 7.19.2. Beyond the RI approximation: DLPNO-NEVPT2
- 7.19.3. Explicitly correlated NEVPT2: NEVPT2-F12 and DLPNO-NEVPT2-F12
- 7.19.4. Tackling large active CASSCF spaces
- 7.19.5. Selecting or Specific States for NEVPT2
- 7.19.6. Unrelaxed Densities and Natural Orbitals
- 7.19.7. State-averaged NEVPT2
- 7.19.8. Quasi-Degenerate SC-NEVPT2
- 7.20. Complete Active Space Peturbation Theory : CASPT2 and CASPT2-K
- 7.21. Dynamic Correlation Dressed CAS
- 7.22. Density Matrix Renormalization Group
- 7.23. Relativistic Options
- 7.24. Approximate Full CI Calculations in Subspace: ICE-CI
- 7.24.1. Introduction
- 7.24.2. The ICE-CI and CIPSI Algorithms
- 7.24.3. A Simple Example Calculation
- 7.24.4. Accuracy
- 7.24.5. Scaling behavior
- 7.24.6. Accuracy of the Wavefunction
- 7.24.7. Potential Energy Surfaces
- 7.24.8. Excited States
- 7.24.9. Tips and Tricks
- 7.24.10. Large-scale approximate CASSCF: ICE-SCF
- 7.24.11. The entire input block explained
- 7.24.12. A Technical Note:
orcacclib
- 7.25. CI methods using generated code
- 7.26. Geometry Optimization
- 7.27. Frequency calculations - numerical and analytical
- 7.28. Intrinsic Reaction Coordinate
- 7.29. Nudged Elastic Band Method
- 7.29.1. Spring forces
- 7.29.2. Optimization and convergence of the NEB method
- 7.29.3. Climbing image NEB
- 7.29.4. Generation of the initial path
- 7.29.5. Removal of translational and rotational degrees of freedom
- 7.29.6. Reparametrization of the path
- 7.29.7. Useful output
- 7.29.8. Important warning messages
- 7.29.9. Parallel execution
- 7.29.10. zoomNEB
- 7.29.11. NEB-TS
- 7.29.12. FAST-NEB-TS and LOOSE-NEB-TS
- 7.29.13. NEB / NEB-TS and TD-DFT
- 7.29.14. Summary of Keywords
- 7.30. Excited States via RPA, CIS, TD-DFT and SF-TDA
- 7.30.1. General Features
- 7.30.2. Semiempirical Methods
- 7.30.3. Hartree-Fock Wavefunctions
- 7.30.4. Non-Hybrid and Hybrid DFT
- 7.30.5. Collinear Spin-Flip TDA (SF-TD-DFT)
- 7.30.6. Including solvation effects via LR-CPCM theory
- 7.30.7. Simplified TDA and TD-DFT
- 7.30.8. Double-hybrid functionals and Doubles Correction
- 7.30.9. Natural Transition Orbitals
- 7.30.10. Computational Aspects
- 7.30.10.1. RI Approximation (AO-Basis)
- 7.30.10.2. RI Approximation (MO-Basis)
- 7.30.10.3. Integral Handling
- 7.30.10.4. Valence versus Rydberg States
- 7.30.10.5. Restrictions for Range-Separated Density Functionals
- 7.30.10.6. Potential Energy Surface Scans
- 7.30.10.7. Potential Energy Surface Scans along Normal Coordinates
- 7.30.10.8. Normal Mode Scan Calculations Between Different Structures
- 7.30.10.9. Printing Extra Gradients Sequentially
- 7.30.11. Keyword List
- 7.31. Excited States via ROCIS and DFT/ROCIS
- 7.32. Excited States via MC-RPA
- 7.33. Excited States via EOM-CCSD
- 7.33.1. General Description
- 7.33.2. Memory Management
- 7.33.3. Initial Guess
- 7.33.4. Hamiltonian Construction
- 7.33.5. Solution of the (Nonsymmetric) Eigenproblem
- 7.33.6. Convergence, Restart, Preconditioning and Subspace Expansion
- 7.33.7. Properties in the RHF EOM implementation
- 7.33.8. Some tips and tricks for EOM-CC calculation
- 7.34. Excited States via STEOM-CCSD
- 7.34.1. General Description
- 7.34.2. Selection of Active space
- 7.34.3. Active space selection using TD-DFT densities
- 7.34.4. The reliability of the calculated excitation energy
- 7.34.5. Removal of IP and EA states with double excitation character
- 7.34.6. Transition and difference densities
- 7.34.7. Properties
- 7.34.8. Solvation (Experimental)
- 7.34.9. Spin-Orbit Coupling (Experimental)
- 7.34.10. Core excitation
- 7.34.11. Transient absorption
- 7.35. Excited States via IH-FSMR-CCSD
- 7.36. Excited States using PNO-based coupled cluster
- 7.37. Excited States via DLPNO-STEOM-CCSD
- 7.38. Core-level spectroscopy with coupled cluster methods
- 7.39. The Multireference Correlation Module
- 7.39.1. General Description
- 7.39.2. Properties Calculation Using the SOC Submodule
- 7.39.2.1. Zero-Field Splitting
- 7.39.2.2. Local Zero-Field Splitting
- 7.39.2.3. Zero-Field Splitting from an excited Multiplet
- 7.39.2.4. g-Tensor
- 7.39.2.5. Magnetization and Magnetic Susceptibility
- 7.39.2.6. MCD and Absorption Spectra
- 7.39.2.7. Addition of Magnetic Fields
- 7.39.2.8. Relativistic Picture Change in Douglas-Kroll-Hess SOC and Zeeman Operators
- 7.39.2.9. X-ray Spectroscopy
- 7.40. Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) Theory
- 7.40.1. The Steps Required to Run an MR-EOM Calculation
- 7.40.2. Approximate Inclusion of Spin-Orbit Coupling Effects in MR-EOM Calculations
- 7.40.3. A Projection/Singular PT Scheme to Overcome Convergence Issues in the T Amplitude Iterations
- 7.40.4. An Orbital Selection Scheme for More Efficient Calculations of Excitation Spectra with MR-EOM
- 7.40.5. Nearly Size Consistent Results with MR-EOM by Employing an MR-CEPA(0) Shift in the Final Diagonalization Procedure
- 7.40.6. Perturbative MR-EOM-PT
- 7.41. Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra with the orca_asa Program
- 7.41.1. General Description of the Program
- 7.41.2. Spectral Simulation Procedures: Input Structure and Model Parameters
- 7.41.2.1. Example: Simple Mode
- 7.41.2.2. Example: Modelling of Absorption and Fluorescence Spectra within the IMDHO Model
- 7.41.2.3. Example: Modelling of Absorption and Fluorescence Spectra within the IMDHOFA Model
- 7.41.2.4. Example: Modelling of Effective Broadening, Effective Stokes Shift and Temperature Effects in Absorption and Fluorescence Spectra within the IMDHO Model
- 7.41.2.5. Example: Modelling of Absorption and Resonance Raman Spectra for the 1-\(^1\)A\(_g\) \(\rightarrow\) 1-\(^1\)B\(_u\) Transition in trans-1,3,5-Hexatriene
- 7.41.2.6. Example: Modelling of Absorption Spectrum and Resonance Raman Profiles for the 1-\(^1\)A\(_g\) \(\rightarrow\) 1-\(^1\)B\(_u\) Transition in trans-1,3,5-Hexatriene
- 7.41.3. Fitting of Experimental Spectra
- 7.41.3.1. Example: Gauss-Fit of Absorption Spectrum
- 7.41.3.2. Example: Fit of Absorption and Resonance Raman Spectra for 1-\(^1\)A\(_g\) \(\rightarrow\) 1-\(^1\)B\(_u\) Transition in trans-1,3,5-Hexatriene
- 7.41.3.3. Example: Single-Mode Fit of Absorption and Fluorescence Spectra for 1-\(^1\)A\(_g\) \(\rightarrow\) 1-\(^1\)B\(_{2u}\) Transition in Tetracene
- 7.41.4. Quantum-Chemically Assisted Simulations and Fits of Optical Bandshapes and Resonance Raman Intensities
- 7.41.4.1. Example: Quantum-Chemically Assisted Analysis and Fit of the Absorption and Resonance Raman Spectra for 1-\(^1\)A\(_g\) \(\rightarrow\) 1-\(^1\)B\(_u\) Transition in trans-1,3,5-Hexatriene
- 7.41.4.2. Important Notes about Proper Comparison of Experimental and Quantum Chemically Calculated Resonance Raman Spectra
- 7.41.4.3. Example: Normal Mode Scan Calculations of Model Parameters for 1-\(^1\)A\(_g\) \(\rightarrow\) 1-\(^1\)B\(_u\) Transition in trans-1,3,5-Hexatriene
- 7.42. One Photon Spectroscopy
- 7.43. Magnetic properties through Quasi Degenerate Perturbation Theory
- 7.44. Simulation of (Magnetic) Circular Dichroism and Absorption Spectra
- 7.45. More on the Excited State Dynamics module
- 7.45.1. Absorption and Emission Rates and Spectrum
- 7.45.1.1. General Aspects of the Theory
- 7.45.1.2. Approximations to the excited state PES
- 7.45.1.3. Mixing methods
- 7.45.1.4. Removal of frequencies
- 7.45.1.5. Normal modes coordinate systems
- 7.45.1.6. Geometry rotation and Duschinsky matrices
- 7.45.1.7. Derivatives of the transition dipole
- 7.45.1.8. The Fourier Transform step
- 7.45.1.9. Spectrum options
- 7.45.1.10. General
- 7.45.2. Intersystem crossing rates
- 7.45.3. Resonant Raman Spectrum
- 7.45.4. Circular Polarized Spectroscopies
- 7.45.5. Magnetic Circular Dichroism
- 7.45.6. Complete Keyword List for the ESD Module
- 7.45.1. Absorption and Emission Rates and Spectrum
- 7.46. More details on the ORCA DOCKER
- 7.47. More on the ORCA SOLVATOR
- 7.48. Ab initio Molecular Dynamics Simulations
- 7.48.1. Changes in ORCA 5.0
- 7.48.2. Changes in ORCA 4.2 (Aug 2019)
- 7.48.3. Changes in ORCA 4.1 (Dec 2018)
- 7.48.4. Input Format
- 7.48.5. Discussion of Features
- 7.48.6. Command List
- 7.48.7. Command Overview
- 7.48.7.1.
Cell
- 7.48.7.2.
Constraint
- 7.48.7.3.
Dump
- 7.48.7.4.
Initvel
- 7.48.7.5.
Manage_Colvar
- 7.48.7.6.
Manage_Region
- 7.48.7.7.
Metadynamics
- 7.48.7.8.
Minimize
- 7.48.7.9.
PrintLevel
- 7.48.7.10.
Randomize
- 7.48.7.11.
Restart
- 7.48.7.12.
Restraint
- 7.48.7.13.
Run
- 7.48.7.14.
SCFLog
- 7.48.7.15.
Screendump
- 7.48.7.16.
Thermostat
- 7.48.7.17.
Timestep
- 7.48.7.1.
- 7.48.8. Scientific Background
- 7.49. Fast Multipole Method
- 7.50. Implicit Solvation Models
- 7.51. Calculation of Properties
- 7.51.1. Electric Properties
- 7.51.2. The Spin-Orbit Coupling Operator
- 7.51.3. EPR and NMR properties
- 7.51.3.1. Hyperfine and Quadrupole Couplings
- 7.51.3.2. The g-Tensor
- 7.51.3.3. Zero-Field-Splitting
- 7.51.3.4. General Treatment of ZFS
- 7.51.3.5. Spin-rotation constants
- 7.51.3.6. Cartesian Index Conventions for EPR and NMR Tensors
- 7.51.3.7. MP2 level magnetic properties
- 7.51.3.8. Nucleus-independent chemical shielding
- 7.51.3.9. Shielding tensor orbital decomposition
- 7.51.3.10. Treatment of Tau in Meta-GGA Functionals
- 7.51.4. Paramagnetic NMR shielding tensors
- 7.51.5. Calculating properties from existing densities
- 7.51.6. Local Energy Decomposition
- 7.52. Natural Bond Orbital (NBO) Analysis
- 7.53. Population Analyses and Control of Output
- 7.54. Orbital and Density Plots
- 7.55. Utility Programs
- 7.55.1. orca_mapspc
- 7.55.2. orca_chelpg
- 7.55.3. orca_pltvib
- 7.55.4. orca_vib
- 7.55.5. orca_loc
- 7.55.6. orca_blockf
- 7.55.7. orca_plot
- 7.55.8. orca_2mkl: Old Molekel as well as Molden inputs
- 7.55.9. orca_2aim
- 7.55.10. orca_vpot
- 7.55.11. orca_euler
- 7.55.12. orca_exportbasis
- 7.55.13. orca_eca
- 7.55.14. orca_pnmr
- 7.55.15. orca_lft
- 7.55.16. orca_crystalprep
- 7.56. Compound Methods
- 7.56.1. Commands
- 7.56.1.1. &
- 7.56.1.2. Abort
- 7.56.1.3. Alias
- 7.56.1.4. Basenames
- 7.56.1.5. Break
- 7.56.1.6. CloseFile
- 7.56.1.7. Continue
- 7.56.1.8. Dataset
- 7.56.1.9. D.MakeReferenceFromDir
- 7.56.1.10. D.Print
- 7.56.1.11. Diagonalize
- 7.56.1.12. End
- 7.56.1.13. EndRun
- 7.56.1.14. EndFor
- 7.56.1.15. For
- 7.56.1.16. Geometry
- 7.56.1.17. G.BohrToAngs
- 7.56.1.18. G.CreateBSSE
- 7.56.1.19. G.FollowNormalMode
- 7.56.1.20. G.GetAtomicNumbers
- 7.56.1.21. G.GetBondDistance
- 7.56.1.22. G.GetCartesians
- 7.56.1.23. G.GetGhostAtoms
- 7.56.1.24. G.GetNumOfAtoms
- 7.56.1.25. G.MoveAtomToCenter
- 7.56.1.26. G.Read
- 7.56.1.27. G.RemoveAtoms
- 7.56.1.28. G.RemoveElements
- 7.56.1.29. G.WriteXYZFile
- 7.56.1.30. GOAT
- 7.56.1.31. Goat.Get_Energy
- 7.56.1.32. Goat.Get_Num_Of_Geometries
- 7.56.1.33. Goat.Parse_Ensemble_File
- 7.56.1.34. Goat.Set_Basename
- 7.56.1.35. Goat.Print
- 7.56.1.36. Goat.WriteXYZFile
- 7.56.1.37. GetNumOfInstances
- 7.56.1.38. GoTo
- 7.56.1.39. If
- 7.56.1.40. InvertMatrix
- 7.56.1.41. Mat_p_Mat
- 7.56.1.42. Mat_x_Mat
- 7.56.1.43. Mat_x_Scal
- 7.56.1.44. New_Geom
- 7.56.1.45. OpenFile
- 7.56.1.46. New_Step
- 7.56.1.47. Print
- 7.56.1.48. Read
- 7.56.1.49. ReadProperty
- 7.56.1.50. Read_Geom
- 7.56.1.51. ReadMOs
- 7.56.1.52. S.GetBasename
- 7.56.1.53. S.GetChar
- 7.56.1.54. S.GetSuffix
- 7.56.1.55. Step_End
- 7.56.1.56. Sys_cmd
- 7.56.1.57. Timer
- 7.56.1.58. T.Last
- 7.56.1.59. T.Reset
- 7.56.1.60. T.Start
- 7.56.1.61. T.Stop
- 7.56.1.62. T.Total
- 7.56.1.63. Variables - General
- 7.56.1.64. Variables - Declaration
- 7.56.1.65. Variables - Assignment
- 7.56.1.66. Variables - Functions
- 7.56.1.67. V.GetBool()
- 7.56.1.68. V.GetDim1()
- 7.56.1.69. V.GetDim2()
- 7.56.1.70. V.GetDouble()
- 7.56.1.71. V.GetInteger()
- 7.56.1.72. V.GetSize()
- 7.56.1.73. V.GetString()
- 7.56.1.74. V.PrintMatrix()
- 7.56.1.75. With
- 7.56.1.76. Write2File
- 7.56.1.77. Write2String
- 7.56.2. List of known Properties
- 7.56.3. List of known Simple input commands
- 7.56.1. Commands
- 7.57. Compound Examples
- 7.58. orca_2json
- 7.58.1. Export ORCA data
- 7.58.2. Configuration file
- 7.58.3. Available information
- 7.58.3.1. Property File
- 7.58.3.2. Basic Information
- 7.58.3.3. Densities
- 7.58.3.4. Electron Integrals
- 7.58.3.5. TDDFT amplitude data (CIS/RPA)
- 7.58.3.6. JSON Format
- 7.58.3.7. MO Coefficients
- 7.58.4. Import JSON data into ORCA
- 7.58.4.1. Basic Information
- 7.58.4.2. Definition of the real solid harmonic Gaussian orbitals
- 7.58.4.2.1. Angular momentum \(\boldsymbol{s}\) (\(\boldsymbol{\ell=0}\))
- 7.58.4.2.2. Angular momentum \(\boldsymbol{p}\) (\(\boldsymbol{\ell=1}\))
- 7.58.4.2.3. Angular momentum \(\boldsymbol{d}\) (\(\boldsymbol{\ell=2}\))
- 7.58.4.2.4. Angular momentum \(\boldsymbol{f}\) (\(\boldsymbol{\ell=3}\))
- 7.58.4.2.5. Angular momentum \(\boldsymbol{g}\) (\(\boldsymbol{\ell=4}\))
- 7.58.4.2.6. Angular momentum \(\boldsymbol{h}\) (\(\boldsymbol{\ell=5}\))
- 7.58.4.2.7. Angular momentum \(\boldsymbol{i}\) (\(\boldsymbol{\ell=6}\))
- 7.58.4.2.8. Angular momentum \(\boldsymbol{j}\) (\(\boldsymbol{\ell=7}\))
- 7.58.4.2.9. Angular momentum \(\boldsymbol{k}\) (\(\boldsymbol{\ell=8}\))
- 7.59. Property File